Search results

1 – 10 of 137
Article
Publication date: 7 August 2017

Krzysztof Górecki and Paweł Górecki

This paper aims to propose the electrothermal dynamic model of the insulated gate bipolar transistors (IGBT) for SPICE.

Abstract

Purpose

This paper aims to propose the electrothermal dynamic model of the insulated gate bipolar transistors (IGBT) for SPICE.

Design/methodology/approach

The electrothermal model of this device (IGBT), which takes into account both electrical and thermal phenomena, is described. Particularly, the sub-threshold operation of this device is considered and electrical, and thermal inertia of this device is taken into account. Attention was focused on the influence of electrical and thermal inertia on waveforms of terminal voltages of the considered transistor operating in the switching circuit and on waveforms of the internal temperature of this device.

Findings

The correctness of the presented model is verified experimentally and a good agreement of the calculated and measured electrical and thermal characteristics of the considered device is obtained.

Research limitations/implications

The presented model can be used for different types of IGBT, but it is dedicated for SPICE software only.

Originality/value

The form of the worked out model is presented and the results of experimental verification of this model are shown.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 August 2015

Krzysztof Górecki and Przemysław Ptak

– The purpose of this paper is to present an electrothermal model of the module containing power light emitting diodes (LEDs) situated on a common base.

Abstract

Purpose

The purpose of this paper is to present an electrothermal model of the module containing power light emitting diodes (LEDs) situated on a common base.

Design/methodology/approach

The electrothermal model of this device, which takes into account both self-heating and mutual thermal coupling between the diodes situated in this module, is described.

Findings

The correctness of the presented model is verified experimentally, and a good agreement of the calculated and measured optical and thermal characteristics of the considered module is obtained.

Research limitations/implications

The presented model can be used for different structures of the LED module, but electrical inertia in the diodes is omitted.

Practical implications

The presented model was used to calculate electrical, thermal and optical waveforms of the module OSPR3XW1 containing three power LED situated on the common base.

Originality/value

The presented model takes into account thermal inertia in the considered LED module and its cooling systems with mutual thermal coupling between all the diodes situated in the same module.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 August 2010

Moez Ayadi, Mohamed Amine Fakhfakh, Moez Ghariani and Rafik Neji

Power modules including the insulated gate bipolar transistor (IGBT) are widely used in the applications of motor drivers. The thermal behavior of these modules makes it important…

Abstract

Purpose

Power modules including the insulated gate bipolar transistor (IGBT) are widely used in the applications of motor drivers. The thermal behavior of these modules makes it important to choose the optimum design of cooling system. The purpose of this paper is to propose an RC thermal model of the dynamic electro‐thermal behavior of IGBT pulse width modulation inverter modules.

Design/methodology/approach

The electrothermal model has been implemented and simulated with a MATLAB simulator and takes into account the thermal influence between the different module chips based on the technique of superposition.

Findings

This study has led to a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone.

Originality/value

In this paper, an experimental technique of a thermal influence evaluation is presented.

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 11 May 2010

Kaiçar Ammous, Elyes Haouas and Slim Abid

The purpose of this paper is to develop a simulation tool which permits reducing the cost of long time‐range simulation of complex converters and running at high frequency.

Abstract

Purpose

The purpose of this paper is to develop a simulation tool which permits reducing the cost of long time‐range simulation of complex converters and running at high frequency.

Design/methodology/approach

A different method is used to represent a simplified converter but the adopted technique uses the average representation of the cell converter.

Findings

The paper shows that the use of averaged representation of the pulse width modulation switch in multilevel converters is staying applied. The main advantage of the proposed averaged model is its simplified representation when only electrical behaviour is considered.

Research limitations/implications

The analytical algorithm of the averaged model can be introduced in different simulator as it has a description language, enabling study of the Compatibilité Electromagnétique and electrothermal phenomena.

Originality/value

This paper presents an averaged model of the multilevel converter which can be implemented in any simulator as it has a description language.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2008

J.D. Lavers

To provide a selective bibliography for researchers and graduate students who have an interest in induction processes applied to the electromagnetic processing of materials.

1394

Abstract

Purpose

To provide a selective bibliography for researchers and graduate students who have an interest in induction processes applied to the electromagnetic processing of materials.

Design/methodology/approach

The objective is to provide references that identify seminal, early work, and references that represent the current state of the art. References are listed in categories that cover the broad range of induction modeling and application issues.

Findings

A brief overview of the key areas in induction processing of materials is provided, but greater emphasis and space is devoted to the references provided.

Research limitations/implications

The middle years of each topic area are not covered.

Practical implications

A very comprehensive coverage of material is provided to those with an interest in induction processing of materials.

Originality/value

This paper fulfils an identified information/resources need.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 February 2022

Jinghua Xu, Kunqian Liu, Zhi Liu, Fuqiang Zhang, Shuyou Zhang and Jianrong Tan

Most rapid prototyping (RP) relies on energy fields to handle materials, among which electricity has been much more utilized, resulting in distinctive responsiveness of…

Abstract

Purpose

Most rapid prototyping (RP) relies on energy fields to handle materials, among which electricity has been much more utilized, resulting in distinctive responsiveness of non-linear, overshoot, variable inertia, etc. The purpose of this paper is to eliminate the drawbacks of array nozzle clogging, stringing, melt sagging, particularly in multi-material RP, by focusing on the electrothermal response so as to adaptively distribute thermal more accurate, rapid and balanced.

Design/methodology/approach

This paper presents an electrothermal response optimization method of nozzle structure for multi-material RP based on fuzzy adaptive control (FAC). The structural, physical and control model are successively logically built. The fractional order electrothermal model is identified by Riemann Liouville fractional differential equation, using the bisection method to approximate the physical model via least square method to minimize residual sum of squares. The FAC is thereafter implemented by defining fuzzy proportion integration differentiation control rules and fuzzy membership functions for fuzzy inference and defuzzification.

Findings

The transient thermodynamic and structural statics, as well as flow field analysis, are conducted. The response time, mean temperature difference and thermal deformation can be found using thermal-solid coupling finite element analysis. In physical experimental research, temperature change, together with material extrusion loading, were measured. Both numerical and physical studies have revealed findings that the electrothermal responsiveness varies with the three-dimensional structure, materials and energy sources, which can be optimized by FAC.

Originality/value

The proposed FAC provides an optimization method for extrusion-based multi-material RP between the balance of thermal response and energy efficiency through fulfilling potential of the hardware configuration. The originality may be widely adopted alongside increasing requirements on high quality and high efficiency RP.

Article
Publication date: 3 February 2020

Krzysztof Górecki and Paweł Górecki

The purpose of this paper is to propose a simple electrothermal model of GaN Schottky diodes, and its usefulness for circuit-level electrothermal simulation of laboratory-made…

Abstract

Purpose

The purpose of this paper is to propose a simple electrothermal model of GaN Schottky diodes, and its usefulness for circuit-level electrothermal simulation of laboratory-made devices is proved.

Design/methodology/approach

The compact electrothermal model of this device has the form of a subcircuit for simulation program with integrated circuit emphasis. This model takes into account influence of a change in ambient temperature in a wide range as well as influence of self-heating phenomena on dc characteristics of laboratory-made GaN Schottky diodes. The method of model parameters estimation is described.

Findings

It is shown that temperature influences fewer characteristics of GaN Schottky diodes than classical silicon diodes. The discussed model accurately describes properties of laboratory made GaN Schottky diodes. Additionally, the measured and computed characteristics of these diodes are shown and discussed.

Research limitations/implications

The presented model together with the results of measurements and computations is dedicated only to laboratory-made GaN Schottky diodes.

Originality/value

The presented investigations show that characteristics of laboratory-made GaN Schottky diodes visibly change with temperature. These changes can be correctly estimated using the compact electrothermal model proposed in this paper. The correctness of this model is proved for four structures of such diodes characterised by different values of structure area and a different assembly process.

Details

Microelectronics International, vol. 37 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 2014

Hanen Mejbri, Kaiçar Ammous, Slim Abid, Hervé Morel and Anis Ammous

– This paper aims to focus on the trade-off between losses and converter cost.

Abstract

Purpose

This paper aims to focus on the trade-off between losses and converter cost.

Design/methodology/approach

The continual development of power electronic converters, for a wide range of applications such as renewable energy systems (interfacing photovoltaic panels via power converters), is characterized by the requirements for higher efficiency and lower production costs. To achieve such challenging objectives, a computer-aided design optimization based on genetic algorithms is developed in Matlab environment. The elitist non-dominated sorting genetic algorithm is used to perform search and optimization, whereas averaged models are used to estimate power losses in different semiconductors devices. The design problem requires minimizing the losses and cost of the boost converter under electrical constraints. The optimization variables are, as for them, the switching frequency, the boost inductor, the DC capacitor and the types of semiconductor devices (IGBT and MOSFET). It should be pointed out that boost topology is considered in this paper but the proposed methodology is easily applicable to other topologies.

Findings

The results show that such design methodology for DC-DC converters presents several advantages. In particular, it proposes to the designer a set of solutions – as an alternative of a single one – so that the authors can choose a posteriori the adequate solution for the application under consideration. This then allows the possibility of finding the best design among all the available choices. Furthermore, the design values for the selected solution were obtainable components.

Originality/value

The authors focus on the general aspect of the discrete optimization approach proposed here. It can also be used by power electronics designers with the help of additional constraints in accordance with their specific applications. Furthermore, the use of such non-ideal average models with the multi-objective optimization is the original contribution of the paper and it has not been suggested so far.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1993

Y. Apanovich, R. Cottle, B. Freydin, E. Lyumkis, B. Polsky, A. Tchernaiev and P. Blakey

Self‐consistent electrothermal simulation of modern semiconductor devices is required for the accurate and efficient design and optimization of many semiconductor devices. The…

Abstract

Self‐consistent electrothermal simulation of modern semiconductor devices is required for the accurate and efficient design and optimization of many semiconductor devices. The need to perform this type analysis in order to predict the behavior of power devices was realized many years ago. It is now clear that nonisothermal analysis can be very important for VLSI devices as well.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 7 July 2020

Abdoulaye Ba, Huu Kien Bui, Gérard Berthiau, Didier Trichet and Guillaume Wasselynck

This paper aims to present a lightened 3D finite element model (FEM) for coupled electromagnetic thermal simulation of the induction thermography non-destructive testing (NDT…

Abstract

Purpose

This paper aims to present a lightened 3D finite element model (FEM) for coupled electromagnetic thermal simulation of the induction thermography non-destructive testing (NDT) technique to reduce the computation time.

Design/methodology/approach

The time harmonic electromagnetic problem is expressed in Aϕ formulation and lightened by using the surface impedance boundary condition (SIBC) applied to both the massive induction coil surface and the surface of conductor workpiece including open cracks. The external circuit is taken into account by using the impressed voltage or the impressed current formulation. The thermal diffusion in the workpiece is solved by using surface electromagnetic power density as thermal source.

Findings

The accuracy and the usefulness of the method for the design of the induction thermography NDT technique have been shown with acceptable deviation compared with a full FEM model. It is also observed that at high frequency, when the ratio between the local radius of the conductor and the skin depth is high, a very good accuracy can be obtained with the SIBC methods. At lower frequency, the effect of the curvature of the surface becomes significant. In this case, the use of the Mitzner’s impedance can help to correct the error.

Originality/value

The SIBC can be used for both massive coil and workpieces with open cracks to alleviate 3D FEMs of the coupled electrothermal model. The implementation in matrix form of the coupled electrothermal formulation is given in details. The comparisons with reference analytical solution and full 3D FEM show the accuracy and performance of the method. In the test case presented, the computation time is 6.6 times lower than the classical model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 137