Search results

1 – 10 of 18
Article
Publication date: 14 August 2023

Jinyao Zhu, Cong Niu, Jinbao Chen, Chen Wang, Dianfu Liu and Decai Yang

The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS…

Abstract

Purpose

The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS) in orbit to maintain continuous tracking of the sun to provide power. It also highlights the need to evaluate the performance of the ASRM and predict potential failure modes in various extreme scenarios.

Design/methodology/approach

To evaluate the performance of the ASRM, a dynamic model was created and tested under normal and faulty conditions. In addition, a multidirectional stiffness test was conducted on the prototype to verify the accuracy of the ASRM's dynamic model. The high-precision ASRM model was then used to predict potential failure modes and damaged parts in various extreme scenarios.

Findings

The simulation results were in good agreement with the test results, with a maximum error of less than 8.85%. The high-precision ASRM's model was able to accurately predict potential failure modes and damaged parts in extreme scenarios, demonstrating the effectiveness of the proposed model and simulation evaluation test.

Originality/value

The proposed high-precision ASRM model and simulation evaluation test provide an effective way to evaluate the structural safety and optimize the design of the spacecraft. This information can be used to improve the performance and reliability of the CSS's solar array and ensure continuous power supply to the station.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 May 2022

Sutapa Mondal and Arup Kumar Nandi

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake…

Abstract

Purpose

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake pedal feel (BPF).

Design/methodology/approach

The conventional hydro-mechanical braking system is redesigned by incorporating a reversing linear solenoid (RLS) and allowed to work in parallel with a regenerative brake. A braking algorithm is proposed, and correspondingly, a control system is designed for the IPRBS for its proper functioning, and a mathematical model is formulated considering vehicle drive during braking. The effectiveness of IPRBS is studied by analyzing two aspects of regenerative braking (BPF and regenerative efficiency) and the impact of regenerative braking contribution to range extension and energy consumption reduction under European Union Urban Driving Cycle (ECE).

Findings

IPRBS is found to maintain a constant BPF in terms of deceleration rate vs pedal displacement during the entire braking period irrespective of speed change and deceleration rate. The regenerative ratio of IPRBS is found to be high compared with conventional parallel regenerative braking, but it is quite the same at high deceleration.

Originality/value

A constant BPF is achieved by introducing an RLS between the input pushrod and booster input rod with appropriate controller design. Comparative analysis of energy regenerated under different regenerative conditions establishes the originality of IPRBS. An average contribution ratio to energy consumption reduction and driving range extension of IPRBS in ECE are obtained as 18.38 and 22.76, respectively.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 September 2023

Tahmineh Raoofi and Sahin Yasar

This study aims to elaborate on the existing link between maintenance practices and the digital world while also highlighting any unaddressed potential for digital transformation…

Abstract

Purpose

This study aims to elaborate on the existing link between maintenance practices and the digital world while also highlighting any unaddressed potential for digital transformation in aircraft maintenance. Additionally, explore how digital technologies contribute to optimizing efficiency within the continuing airworthiness management (CAM) processes.

Design/methodology/approach

A literature review was performed to provide a precise review of the authority regulations on CAM processes and existing literature on digital transformation, including artificial intelligence, machine learning, neural network and big data in civil aircraft maintenance and continuing airworthiness processes. This method is used to organize, analyze and structure the body of literature to identify research gaps in the selected scope of the study.

Findings

The high position of digital technologies in preventive and predictive maintenance and the need for legislative development for using them in CAM are emphasized. Moreover, it is shown in which area of CAM scientific research has been performed regarding the application of frontier digital technologies. In addition, the gaps between maintenance practices and the digital world, along with the potential scopes of digital transformation which has not been well addressed, are identified. And finally, how digital technologies can effectively increase efficiency in CAM processes is discussed.

Originality/value

To the best of our knowledge, no study comprehensively determined the body of existing knowledge on the aspects of digitalization related to the field of continuing airworthiness management and aircraft maintenance. The results of this study provide a positive contribution to airlines, policymakers, manufacturers and maintenance organizations achieving additional benefits from the implementation of digital technologies in the CAM processes.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 October 2023

Mohammad Hadi Moradi and Mehdi Ranjbar-Roeintan

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing…

Abstract

Purpose

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing piezoelectric layers.

Design/methodology/approach

A unit cell shall be taken into account for the simulation of BNNT's volume fraction. A rectangular micromechanical model is used to obtain the mechanical properties of unit cell of piezoelectric fiber-reinforced composite (PFRC). The three-dimensional (3D) elasticity method is presented to provide the relationship between displacements and stresses. The one-dimensional differential quadrature method (1D-DQM) and the state-space methodology are combined to create the semi-analytical technique. The state-space approach is utilized to implement an analytical resolution in the thickness direction, and 1D-DQM is used to implement an approximation solution in the radial direction. The composite consists of a polyvinylidene fluoride (PVDF) matrix and BNNTs as reinforcement.

Findings

A study on the PFRC is carried, likewise, the coefficients of its properties are obtained using a micro-electromechanical model known as the rectangular model. To implement the DQM, the plate was radially divided into sample points, each with eight state variables. The boundary situation and DQM are used to discretize the state-space equations, and the top and bottom application surface conditions are used to determine the natural frequencies of the plate. The model's convergence is assessed. Additionally, the dimensionless frequency is compared to earlier works and ABAQUS simulation in order to validate the model. Finally, the effects of the thickness, lateral wavenumber, boundary conditions and BNNT volume fraction on the annular plate's free vibration are investigated. The important achievements are that increasing the volume fraction of BNNTs increases the natural frequency.

Originality/value

The micromechanical “XY rectangle” model in PFRC along with the three-dimensional elasticity model is used in this literature to assess how the piezoelectric capabilities of BNNTs affect the free vibration of polymer-based composite annular plates under various boundary conditions.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 June 2022

Afaq Ahmad, Zahoor Ahmad, Abdullah Ullah, Naveed Ur Ur Rehman, Muhammad Israr, Muhammad Zia, Haider Ali and Ataur Rahman

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive…

59

Abstract

Purpose

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive aspects and consequences of every topology are demonstrated. Three topologies of axially magnetized moving-magnet LOA; outer mover, inner mover (IM) and dual stator (DS) are designed and examined. Due to its characteristically high thrust density and more mechanical strength, axially magnetized tubular permanent magnets (PMs) are used in these topologies.

Design/methodology/approach

LOAs are designed and optimized using parametric sweep, in term of design parameters and output parameters like thrust force, stroke and operating resonance frequency of the LOA. All the pros and cons of each topology are investigated and compared. Output parameters of the LOAs are compared using same size of the investigated LOAs. Mover mass, which plays a vital role in resonant operation, is analyzed for IM and DS designs. Investigated LOAs are compared with conventional designs of LOA for compressor in refrigeration system with regards of motor constant, stroke and thrust per PM mass.

Findings

This paper analyzes three topologies of moving-magnet LOAs. The basic difference between investigated LOAs is the radius of tubular-shaped mover from its central axis. All the design parameters are compared and concluded that thrust per PM mass of IMLOA is maximum. OMLOA provides maximum motor constant of value 180 N/A. DSLOA provides thrust force with motor constant 120 N/A and required intermediate materials of PMs. All the three designs give the best results in terms of motor constant and thrust per PM mass, compared to conventional designs of LOA.

Originality/value

This paper determines the impact of mover position from its central axis in a tubular-shaped moving-magnet LOA. This work is carried out in correspondence of latest papers of LOA.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 July 2022

Mehtab Khan, Adnan Daud Khan, Muhammad Jawad, Zahoor Ahmad, Naveed Ur Rehman and Muhammad Israr

This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application…

Abstract

Purpose

This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application and space requirements.

Design/methodology/approach

Proposed design comprised of modules, and modules are separated by using nonmagnetic materials. Movable part of the proposed design of LOA is composed of permanent magnets (PMs) having axial magnetization direction and tubular structure. Stator of the proposed design is composed of one coil individually in a module. Dimensions of the design parameters are optimized through parametric analysis using COMSOL Multi Physics software. This design is analyzed up to three modules and their response in term of electromagnetic (EM) force and stroke are presented. Influence of adding modules is analyzed for both directions of direct current (DC) and alternating input loadings.

Findings

Proposed LOA shows linear increase in magnitude of EM force by adding modules. Motor constant of the investigated LOA is 264 N/A and EM force per PM mass is 452.389 N/kg, that shows significant improvement. Moreover, proposed LOA operates in feasible region of stroke for compressor application. Furthermore, this design uses axially magnetized PMs which are low cost and available in compact tubular structure.

Originality/value

Proposed LOA shows the influence of adding modules and its effect in term of EM force is analyzed for DC and alternating current (AC). Moreover, overall performance and structural topology is compared with state-of-the-art designs of LOA. Improvement with regard of motor constant and EM force per PM mass shows originality and scope of this paper.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 18