Search results

1 – 10 of over 4000
Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1129

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 January 2015

Gang Chen and Wei-gong Zhang

The purpose of this paper is to present a prototype simulation system for driving performance of an electromagnetic unmanned robot applied to automotive test (URAT) to solve that…

Abstract

Purpose

The purpose of this paper is to present a prototype simulation system for driving performance of an electromagnetic unmanned robot applied to automotive test (URAT) to solve that it is difficult and dangerous to online debug control program and to quickly obtain test vehicle dynamic performance.

Design/methodology/approach

The driving performance of the electromagnetic URAT can be evaluated by the prototype simulation system. The system can simulate various driving conditions of test vehicles. An improved vehicle longitudinal dynamics model matching to the electromagnetic URAT is established. The proposed model has good real-time, and it is easy to implement. The displacement of throttle mechanical leg, brake mechanical leg, clutch mechanical leg and shift mechanical arm is used for the system input. Test vehicle speed and engine speed are used for the system output, and they are obtained by the computation of the established vehicle longitudinal dynamics model.

Findings

Driving conditions simulation test and vehicle emission test are performed using a Ford Focus car. Simulation and experiment results show that the proposed prototype simulation system in the paper can simulate the driving conditions of actual vehicles, and the performance that electromagnetic URAT drives an actual vehicle is evaluated by the simulation system.

Research limitations/implications

Future research will focus on improving the real time of the proposed simulation system.

Practical implications

The autonomous driving performance of electromagnetic URAT can be evaluated by the proposed prototype simulation system.

Originality/value

A prototype simulation system for driving performance of an electromagnetic URAT based on an improved vehicle longitudinal dynamics model is proposed in this paper, so that it can solve the difficulty and danger of online debugging control program, quickly obtaining the test vehicle performance.

Details

Industrial Robot: An International Journal, vol. 42 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 November 2020

Y.S. Wang, H. Guo, Tao Yuan, L.F. Ma and Changcheng Wang

Electromagnetic noise of permanent magnet synchronous motor (PMSM) seriously affects the sound quality of electric vehicles (EVs). This paper aims to present a comprehensive…

Abstract

Purpose

Electromagnetic noise of permanent magnet synchronous motor (PMSM) seriously affects the sound quality of electric vehicles (EVs). This paper aims to present a comprehensive process for the electromagnetic noise analysis and optimization of a water-cooled PMSM.

Design/methodology/approach

First, the noises of an eight-pole 48-slot PMSM in at speeds up to 10,000 rpm are measured. Furthermore, an electromagnetic-structural-acoustic model of the PMSM is established for multi-field coupling simulations of electromagnetic noises. Finally, the electromagnetic noise of the PMSM is optimized by using the multi-objective genetic algorithm, where a multi-objective function related to the slot width of PMSM stator is defined for radial electromagnetic force (REF) optimization.

Findings

The experimental results show that main electromagnetic noises are the 8n-order (n = 1, 2, 3, …) and 12-order noises. The simulated results show that the REFs are mainly generated by the 8n-order (n = 1, 2, 3, 4, 5, 6) vibrations, especially those of the 8th, 16th, 24th and 32th orders. The 12-order noise is a mechanical noise, which might be caused by the bearings and other structures of the PMSM. Comparing the simulated results before and after optimization, both the REFs and electromagnetic noises are effectively reduced, which suggests that an appropriate design of stator slot is important for reducing electromagnetic noise of the PMSM.

Originality/value

In view of applications, the methods proposed in this paper can be applied to other types of PMSM for generation mechanism analysis of electromagnetic noise, optimal design of PMSM and thereby noise improvement of EVs.

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 February 2021

Martin Marco Nell, Benedikt Groschup and Kay Hameyer

This paper aims to use a scaling approach to scale the solutions of a beforehand-simulated finite element (FE) solution of an induction machine (IM). The scaling procedure is…

209

Abstract

Purpose

This paper aims to use a scaling approach to scale the solutions of a beforehand-simulated finite element (FE) solution of an induction machine (IM). The scaling procedure is coupled to an analytic three-node-lumped parameter thermal network (LPTN) model enabling the possibility to adjust the machine losses in the simulation to the actual calculated temperature.

Design/methodology/approach

The proposed scaling procedure of IMs allows the possibility to scale the solutions, particularly the losses, of a beforehand-performed FE simulation owing to temperature changes and therefore enables the possibility of a very general multiphysics approach by coupling the FE simulation results of the IM to a thermal model in a very fast and efficient way. The thermal capacities and resistances of the three-node thermal network model are parameterized by analytical formulations and an optimization procedure. For the parameterization of the model, temperature measurements of the IM operated in the 30-min short-time mode are used.

Findings

This approach allows an efficient calculation of the machine temperature under consideration of temperature-dependent losses. Using the proposed scaling procedure, the time to simulate the thermal behavior of an IM in a continuous operation mode is less than 5 s. The scaling procedure of IMs enables a rapid calculation of the thermal behavior using FE simulation data.

Originality/value

The approach uses a scaling procedure for the FE solutions of IMs, which results in the possibility to weakly couple a finite element method model and a LPTN model in a very efficient way.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2008

Marcin Lefik and Krzysztof Komęza

This paper aims to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for a one‐phase induction motor with…

Abstract

Purpose

This paper aims to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for a one‐phase induction motor with locked rotor for nominal and lowered voltage excitation values. It also aims to prepare a calculating method for the average heat transfer coefficient for natural convection from the induction motor housing external face.

Design/methodology/approach

The numerical investigations proposed are based on 3D finite element models for thermal and electromagnetic fields analysis and 3D volume element model for average heat transfer coefficient calculations. The thermal model is experimentally validated.

Findings

The paper provides a numerical method to calculate average heat transfer coefficient for the induction motor housing external faces. This coefficient is shown as a temperature function. Temperature variations in the various parts of the induction motor with locked rotor are calculated. The calculation results are compared with the measurement results.

Research limitations/implications

The average heat transfer coefficient is calculated for a limited range of temperature and for the natural convection case. Electromagnetic field analysis does not include losses in the motor core. These losses could be included in the thermal and electromagnetic fields coupled calculation problem as an additional heat source for the thermal field.

Originality/value

The paper presents a 3D transient thermal field and electromagnetic field coupled problem and proposes a method for calculating the average heat transfer coefficient of natural convection from the housing external face of the induction motor with a locked rotor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2003

N. Siauve, R. Scorretti, N. Burais, L. Nicolas and A. Nicolas

The electromagnetic fields have a great influence on the behaviour of all the living systems. The as low as reasonably achievable (ALARA) principle imposes, in case of long…

1628

Abstract

The electromagnetic fields have a great influence on the behaviour of all the living systems. The as low as reasonably achievable (ALARA) principle imposes, in case of long exposures to low (i.e. power systems) or high frequency (i.e. microwave systems or cell phones) fields, some limitations to the radiated fields by the industrial equipment. On the other hand, some benefits can be taken from the effects of the electromagnetic fields on the living being: the hyperthermal technique is well known for the treatment of the cancer. Either we want to be protected from the fields, or we want to take benefit of the positive effects of these fields, all the effects thermal as well as genetic have to be well known. Like in any industrial application, the electromagnetic field computation allows a better knowledge of the phenomena, and an optimised design. Hence, there is a very important challenge for the techniques of computation of electromagnetic fields. The major difficulties that appear are: (1) related to the material properties – the “material” (the human body) has very unusual properties (magnetic permeability, electric permittivity, electric conductivity), these properties are not well known and depend on the activity of the person, and this material is an active material at the cell scale; (2) related to the coupling phenomena – the problem is actually a coupled problem: the thermal effect is one of the major effects and it is affected by the blood circulation; (3) related to the geometry – the geometry is complex and one has to take into account the environment. The problems that we have to face with are – the identification of the properties of the “material”, the coupled problem solution and the representation of the simulated phenomena.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 March 2019

Wei-Mon Yan, Hsu-Yang Teng, Chun-Han Li and Mohammad Ghalambaz

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are…

Abstract

Purpose

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are established using a computer-aided design software in the actual size. This study aims to evaluate the resulting thermal losses using the electromagnetic analysis of the motor.

Design/methodology/approach

In the electromagnetic analysis, the Joule’s loss in the copper wires of the coil windings and the iron losses (the eddy currents loss and the hysteresis loss) are considered. The flow and heat transfer model for the thermal analysis of the motor including the conduction in solid parts and convection in the fluid part is introduced. The magnetic losses are imported into the thermal analysis model in the form of internal heat generation in motor components. Several cooling system approaches were introduced, such as natural convection cooling, natural convection cooling with various types of fins over the motor casing, forced conviction air-cooled cooling system using a mounted fan, casing surface with and without heat sinks, liquid-cooled cooling system using the water in a channel shell and a hybrid air-cooled and liquid-cooled cooling system.

Findings

The results of the electromagnetics analysis show that the low rotational speed of the motor induces higher currents in coil windings, which in turn, it causes higher copper losses in SRM coil windings. For higher rotational speed of SRM, the core loss is higher than the copper loss is in SRM due to the higher frequency. An air-cooled cooling system is used for cooling of SRM. The results reveal when the rotational speed is at 4,000 rpm, the coil loss would be at the maximum value. Therefore, the coil temperature is about 197.9°C, which is higher than the tolerated standard temperature insulation material. Hence, the air-cooled system cannot reduce the temperature to the safe temperature limitation of the motor and guarantee the safe operation of SRM. Thus, a hybrid system of both air-cooled and liquid-cooled cooling system with mounting fins at the outer surface of the casing is proposed. The hybrid system with the liquid flow of Re = 1,500 provides a cooling power capable of safe operation of the motor at 117.2°C, which is adequate for standard insulation material grade E.

Originality/value

The electromagnetic field and cooling system of a high power SRM in the presence of a mounted fan at the rear of the motor are analyzed. The thermal analysis is performed for both of the air-cooled and liquid-cooled cooling systems to meet the cooling demands of the motor for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2021

Sharmili Das, Rohit Siddharth Dhabarde and V. R. K. Raju

The purpose of this study is to develop a novel rectangular linear induction motor as an electromagnetic stirrer (EMS) using analytical followed by a numerical approach. The…

Abstract

Purpose

The purpose of this study is to develop a novel rectangular linear induction motor as an electromagnetic stirrer (EMS) using analytical followed by a numerical approach. The rectangular linear electromagnetic stirrer (RLEMS) is mainly developed for rectangular slab and billet as the end product.

Design/methodology/approach

A two-dimensional analytical approach for evaluating flux density distribution within the mold is established for RLEMS structure. Subsequently, the average stirring force within the mold is estimated from those field variables. The paper presents an analytical and numerical model for calculating the stirring force and counters the end and edge effects of linear-type EMS. Magnetic field and force profile within the mold due to polyphase rectangular stator distribution has been done with the help of Maxwell’s equation with appropriate boundary conditions by using Fourier transform and inverse Fourier transform. Subsequently, a numerical study has been carried out using a coupled thermal and electromagnetic model.

Findings

The present study investigates the physical phenomena during the solidification process because of an induced electromagnetic field and is able to extract all the electromagnetic field variables under different operating conditions, and, subsequently, provides an insight into the actual happening within the mold.

Originality/value

It provides the analytical method for solving the stirring force of the proposed new RLEMS structure by addressing the smooth and efficient variation of field and velocity profile near the corner of the mold and improves the quality of end product.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 4000