Search results

1 – 10 of 15
Article
Publication date: 15 June 2022

Bo Tang, Xiaofeng Yang, Jiangong Zhang, Zhibin Zhao, Hao Chen and Gang Liu

This paper aims to propose a method for accurate radar echo simulation of wind turbines (WTs) array. It can solve the problem of passive interference from wind farms to…

Abstract

Purpose

This paper aims to propose a method for accurate radar echo simulation of wind turbines (WTs) array. It can solve the problem of passive interference from wind farms to neighboring radar stations.

Design/methodology/approach

First of all, the equivalent model of scattering centers of a single WT is obtained by using the spatial spectrum estimation method, and the accuracy of this model is verified by the scaled model experiment; then scattering centers model of WTs array was established by using the spatial coordinate transformation method. According to the position relationship between the model and the radar, and combined with the multipath scattering theory, the radar echo equation of WTs array was deduced. Finally, the simulation analysis is carried out with the four GoldWind 77/1500 WTs as an example and compared with the traditional methods.

Findings

This paper verifies the accuracy of the equivalent model of scattering centers through the WT scaled model experiment, and through simulation analysis, it is found that the result of this method is more consistent with the multipath scattering of radar echo between WTs array in practical engineering than the traditional method.

Originality/value

Based on the theory of high-frequency scattering, this paper introduces scattering centers into the solution of radar echo and considers the multipath scattering of radar echo, then a method for solving the radar echo of WTs array based on scattering centers is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 July 2019

Dejan B. Jovanovic, Vladimir Stankovic, Nenad N. Cvetkovic, Dejan Krstic and Dragan Vuckovic

The purpose of this paper is to determine the impact of human age on the distribution of electric field and absorbed energy that originates from a mobile phone.

108

Abstract

Purpose

The purpose of this paper is to determine the impact of human age on the distribution of electric field and absorbed energy that originates from a mobile phone.

Design/methodology/approach

This research was performed for frequencies of 900, 1800 and 2100 MHz, which are used in a mobile communication system. To obtain the most accurate results, 3 D realistic model of the child’s head has been created whereby the dimensions of this model correspond to the dimensions of a seven-year-old child. Distribution of the electric field and specific absorption rate (SAR) through the child’s head was obtained by numerical analysis based on the finite integration technique.

Findings

The results discover that amount of absorbed energy is greater in the surface layers of the child’s head model when the electromagnetic (EM) characteristics of tissues are adjusted for the child. This deviation corresponds to different EM characteristics of biological tissues and organs of an adult person compared to a child.

Research limitations/implications

The study deals with penetrated electrical field and absorbed EM field energy. There is space for further studies of other EM field effects (e.g. thermal effects).

Practical implications

The analysis of obtained results leads to idea that mobile phones and devices aimed for children using should be modified to provide SAR values inside prescribed standards.

Social implications

The obtained results are foundation for future research on influence of EM fields of mobile devices on human health.

Originality/value

The proposed procedure offers the model for accurate estimation and quality analysis of SAR and EM field distribution inside child head tissue.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1992

R.A. Scaramuzza and C. Christopoulos

Transmission line modelling is a technique that can be applied to the analysis and design of electromagnetic devices. Developments to the method are described which improve its…

Abstract

Transmission line modelling is a technique that can be applied to the analysis and design of electromagnetic devices. Developments to the method are described which improve its efficiency and flexibility.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 July 2014

Jae-bok Lee, Jun Zou, Benliang Li and Munno Ju

The per-unit-length earth return mutual impedance of the overhead conductors plays an important role for analyzing electromagnetic transients or couplings of multi-conductor…

Abstract

Purpose

The per-unit-length earth return mutual impedance of the overhead conductors plays an important role for analyzing electromagnetic transients or couplings of multi-conductor systems. It is impossible to have a closed-form expression to evaluate this kind of impedance. The purpose of this paper is to propose an efficient numerical approach to evaluate the earth return mutual impedance of the overhead conductors above horizontally multi-layered soils.

Design/methodology/approach

The expression of the earth return mutual impedance, which contains a complex highly oscillatory semi-infinite integral, is divided into two parts intentionally, i.e. the definite and the tail integral, respectively. The definite integral is calculated using the proposed moment functions after fitting the integrand into the piecewise cubic spline functions, and the tail integral is replaced by exponential integrals with newly developed asymptotic integrands.

Findings

The numerical examples show the proposed approach has a satisfactory accuracy for different parameter combinations. Compared to the direct quadrature approach, the computational time of the proposed approach is very competitive, especially, for the large horizontal distance and the low height of the conductors.

Originality/value

The advantage of the proposed approach is that the calculation of the highly oscillatory integral is completely avoided due to the fact that the moment function can be evaluated analytically. The contribution of the tail integral is well included by means of the exponential integral, though in an asymptotic way. The proposed approach is completely general, and can be applied to calculate the earth return mutual impedance of overhead conductors above a soil structure with an arbitrary number of horizontal layers.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2019

Guishu Liang and Yulan Yang

This paper aims to analyze soil electrical properties based on fractional calculus theory due to the fact that the frequency dependence of soil electrical parameters at high…

97

Abstract

Purpose

This paper aims to analyze soil electrical properties based on fractional calculus theory due to the fact that the frequency dependence of soil electrical parameters at high frequencies exhibits a fractional effect. In addition, for the fractional-order formulation, this paper aims to provide a more accurate numerical algorithm for solving the fractional differential equations.

Design/methodology/approach

This paper analyzes the frequency-dependence of soil electrical properties based on fractional calculus theory. A collocation method based on the Puiseux series is proposed to solve fractional differential equations.

Findings

The algorithm proposed in this paper can be used to solve fractional differential equations of arbitrary order, especially for 0.5th-order equations, obtaining accurate numerical solutions. Calculating the impact response of the grounding electrode based on the fractional calculus theory can obtain a more accurate result.

Originality/value

This paper proposes an algorithm for solving fractional differential equations of arbitrary order, especially for 0.5th-order equations. Using fractional calculus theory to analyze the frequency-dependent effect of soil electrical properties, provides a new idea for ground-related transient calculation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Baidy Touré, Laurent Gerbaud, Jean-Luc Schanen and Régis Ruelland

The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet synchronous…

Abstract

Purpose

The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet synchronous machine fed by a six-phase voltage inverter with PMW control), using optimization for both sizing and sensibility analyses.

Design/methodology/approach

The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies.

Findings

The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies.

Research limitations/implications

The power electronics load is supposed to be a set of predefined harmonic sources, obtained by experiment or time simulation plus fast fourier transformation before the optimization process.

Practical implications

The problem has numerous constraints on the components, mainly technological constraints. The volume is minimized, respecting electromagnetic standards and an electro magnetic interference filter prototype has been made.

Originality/value

The frequency model is automatically generated. A complex aircraft application has been studied thanks to the approach. Several sensibility analyses have been carried out. An EMC filter has been sized and an experimental prototype has been made, comforting the sizing by optimization.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Moises Ferber, Christian Vollaire, Laurent Krähenbühl and João Antônio Vasconcelos

The purpose of this paper is to introduce a novel methodology for uncertainty quantification in large-scale systems. It is a non-intrusive approach based on the unscented…

Abstract

Purpose

The purpose of this paper is to introduce a novel methodology for uncertainty quantification in large-scale systems. It is a non-intrusive approach based on the unscented transform (UT) but it requires far less simulations from a EM solver for certain models.

Design/methodology/approach

The methodology of uncertainty propagation is carried out adaptively instead of considering all input variables. First, a ranking of input variables is determined and after a classical UT is applied successively considering each time one more input variable. The convergence is reached once the most important variables were considered.

Findings

The adaptive UT can be an efficient alternative of uncertainty propagation for large dimensional systems.

Originality/value

The classical UT is unfeasible for large-scale systems. This paper presents one new possibility to use this stochastic collocation method for systems with large number of input dimensions.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Junjie Ma and Shuhuang Xiang

The earth-return mutual impedances between underground and overhead conductors can be expressed by Pollaczek integrals. Many efforts have been exerted to calculating this kind of…

Abstract

Purpose

The earth-return mutual impedances between underground and overhead conductors can be expressed by Pollaczek integrals. Many efforts have been exerted to calculating this kind of integrals. However, most of numerical methods turn out to be time-consuming as integrands become highly oscillatory and strongly singular. Therefore, efficient algorithms should be devised. The paper aims to discuss these issues.

Design/methodology/approach

The paper separates the singularity from the whole integral and couple with the singularity and oscillation, respectively. A sinh transformation is applied for the finite part and complex integration method is used to calculate the tail.

Findings

Numerical experiments show that the given method shares the property that the stronger the singularity and the higher the oscillation, the better the accuracy of the calculation.

Originality/value

The sinh transformation is first proposed to calculate Pollaczek integrals. This efficient algorithm can be used to evaluate mutual impedances between conductors. Also, it provides a new aspect of the research on fast calculation of Pollaczek integrals and Sommerfeld integrals.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Vasundhara Mahajan, Pramod Agarwal and Hari Om Gupta

The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky and…

Abstract

Purpose

The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky and expensive. The purpose of this paper is to motivate the use of multilevel inverter as harmonic filter, which eliminates the coupling transformer and allows direct control of the power circuit. The advancement in artificial intelligence (AI) for computation is explored for controller design.

Design/methodology/approach

The proposed scheme has a five-level cascaded H-bridge multilevel inverter (CHBMLI) as a harmonic filter. The control scheme includes one neural network controller and two fuzzy logic-based controllers for harmonic extraction, dc capacitor voltage balancing, and compensating current adjustment, respectively. The topology is modeled in MATLAB/SIMULINK and implemented using dSPACE DS1103 interface for experimentation.

Findings

The exhaustive simulation and experimental results demonstrate the robustness and effectiveness of the proposed topology and controllers for harmonic minimization for RL/RC load and change in load. The comparison between traditional PI controller and proposed AI-based controller is presented. It indicates that the AI-based controller is fast, dynamic, and adaptive to accommodate the changes in load. The total harmonic distortion obtained by applying AI-based controllers are well within the IEEE519 std. limits.

Originality/value

The simulation of high-power, medium-voltage system is presented and a downscaled prototype is designed and developed for implementation. The laboratory module of CHBMLI-based harmonic filter and AI-based controllers modeled in SIMULINK is executed using dSPACE DS1103 interface through real time workshop.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1975

H. SPENCER, L. REYNOLDS and B. COE

Bibliographical materials are often produced on a low budget and against a deadline, and the design of the material often does not adequately represent the structure of the…

Abstract

Bibliographical materials are often produced on a low budget and against a deadline, and the design of the material often does not adequately represent the structure of the information or facilitate its use. Two studies concerned with optimizing the effectiveness of design given certain practical constraints are reported here. In the first study, ten coding systems suitable for distinguishing between entries in typewritten bibliographies were tested. Subjects were given sections of author index typed in different styles, together with lists of authors' surnames to be found in the test material within a set time. The most effective system made a clear distinction between entries, and between the first element of each entry and the rest of the entry, by indentation. In the second study, the effectiveness of six spatial and three typographic coding systems for distinguishing between entries and between elements within entries in typeset bibliographies was tested for two different search tasks. In Experiment I, subjects were given lists of authors' surnames to find in the test material; in Experiment 2 they were given lists of titles. Spatial coding was more effective than typographic coding in Experiment 1; the reverse was true for Experiment 2. The most effective spatial coding systems in both experiments were those which clearly distinguished the start of each entry by line spacing or indentation. The use of capitals for authors' surnames was the most effective typographic coding system in Experiment 1; the use of bold for titles was the most effective in Experiment 2. The best compromise for both search tasks is likely to incorporate line spacing between entries with elements within entries running on, and bold titles.

Details

Journal of Documentation, vol. 31 no. 2
Type: Research Article
ISSN: 0022-0418

Access

Year

All dates (15)

Content type

1 – 10 of 15