Search results

11 – 20 of over 5000
Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 October 2023

Wen Pin Gooi, Pei Ling Leow, Jaysuman Pusppanathan, Xian Feng Hor and Shahrulnizahani Mohammad Din

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed…

Abstract

Purpose

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed around a cylindrical chamber, the planar ECT sensor has been investigated for depth and defect detection. However, the planar ECT sensor has limited height and depth sensing capability due to its single-sided assessment with the use of only a single-plane design. The purpose of this paper is to investigate a dual-plane miniature planar 3D ECT sensor design using the 3 × 3 matrix electrode array.

Design/methodology/approach

The sensitivity map of dual-plane miniature planar 3D ECT sensor was analysed using 3D visualisation, the singular value decomposition and the axial resolution analysis. Then, the sensor was fabricated for performance analysis based on 3D imaging experiments.

Findings

The sensitivity map analysis showed that the dual-plane miniature planar 3D ECT sensor has enhanced the height sensing capability, and it is less ill-posed in 3D image reconstruction. The dual-plane miniature planar 3D ECT sensor showed a 28% improvement in reconstructed 3D image quality as compared to the single-plane sensor set-up.

Originality/value

The 3 × 3 matrix electrode array has been proposed to use only the necessary electrode pair combinations for image reconstruction. Besides, the increase in number of electrodes from the dual-plane sensor setup improved the height reconstruction of the test sample.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 September 2023

Yanyan Shi, Fenglan Huang, Meng Wang and Yongheng Li

To solve the problem of low sensitivity of traditional capacitive proximity sensor, this paper aims to propose a novel capacitive sensor for detection of an approaching conductor.

Abstract

Purpose

To solve the problem of low sensitivity of traditional capacitive proximity sensor, this paper aims to propose a novel capacitive sensor for detection of an approaching conductor.

Design/methodology/approach

Five capacitive proximity sensors with different structures are designed and the performance is compared with the traditional capacitive sensor. The impacts of geometrical parameters on the performance of the proposed capacitive sensor are studied. Furthermore, the sensitivity of the proposed capacitive sensor to an approaching conductor with different sizes is discussed. Also, how the designed capacitive sensor is sensitive to the lateral placement of the approaching object is analyzed.

Findings

Several capacitive proximity sensor structures have been designed and analyzed. It is found that the capacitive sensor with the top small ring-bottom large ring structure shows stronger electric field distribution around the top electrode and higher sensitivity to the approaching conductor than other sensors. Through further analysis of the proposed sensor, the results demonstrate that proposed capacitive sensor is effective for proximity object detection.

Originality/value

This paper proposes a novel capacitive proximity sensor with top small ring-bottom large ring structure. Compared with the traditional capacitive sensor, the proposed capacitive sensor is more sensitive to the approaching object. This would be helpful for the accurate detection of the approaching object. Also, the top and bottom electrodes are much smaller.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 August 2022

Jayaraman Kathirvelan

The purpose of this paper is to deal with an identification of a novel ink-jet printing sensor fabrication technology for fabricating flexible carbon heaters of macro and micro…

Abstract

Purpose

The purpose of this paper is to deal with an identification of a novel ink-jet printing sensor fabrication technology for fabricating flexible carbon heaters of macro and micro sizes, carbon interdigitated (IDT) electrodes and silver IDT electrodes. The technology involved in the proposed ink-jet printing method and materials used for the formulation of homemade nano-conductive inks (digital inks) are discussed in detail. The ink-jet printed flexible carbon heaters of different sizes (macro and micro) and carbon IDT electrodes and flexible silver IDT electrodes can be used as the flexible sensing layers in electrochemical gas sensors for sensitive and selective gas sensing applications. The characterization of ink-jet printed carbon heaters on Kapton substrate and its results are discussed. Similarly, the results of formulation of silver nano-conductive ink and printing of silver IDT electrodes on Kapton and its characterization are reported here for the first time.

Design/methodology/approach

Flexible carbon heaters of different sizes (macro and micro), carbon micro-IDT electrodes and silver IDT electrodes patterns were developed using AutoCAD 2D and printed on the Kapton (polyimide sheet) flexible substrate using the home-made nano-conductive inks with the help of EpsonT60 commercial piezo-head-based drop-on demand technology printer with standard printing options.

Findings

The proposed novel method is able to print heater patterns and IDT electrode patterns of approximately 12 µm and approximately 1 µm thickness, respectively, on flexible substrate using the home-made nano-conductive inks of carbon and silver by using a commercial low-cost printer. The home-made nano-conductive inks can be re-used for multiple prints up to six months shelf life. The resistance of the carbon heater was measured as 88 O under normal atmospheric condition. The novel flexible carbon heater was tested for its functionality and found to be satisfactory. The resistance of the silver IDT flexible electrodes was measured as 9.5 O which is better than the earlier works carried out in this paper.

Research limitations/implications

The main challenge is associated with cleaning of printing ink ejection system in the existing commercial printers. The customization of the existing printer in the near future can minimize the printing challenges.

Practical implications

The novel ink-jet printing technology proposed in this work is cost-effective, capable of achieving bulk production of flexible sensor elements, and consumes the least device fabrication time and high material yielding. The printing can be done with commercial piezo-head-based ink-jet printers with custom-prepared nano-conductive inks. There is a huge market potential for this paper.

Originality/value

Both the carbon heaters and silver IDT electrodes were printed on Kapton flexible substrate by using the commercial printer for the first time. The paper is promising the revolution in flexible low-cost sensor fabrication for mass production, and it is an alternate for thin film and thick sensor fabrication methods. The future of sensor fabrication technology will be the ink-jet printing method. In this paper, the research developments of flexible carbon heaters and flexible silver IDT electrodes for the time are reported. The characterization of carbon heaters and silver IDT electrodes were carried out and confirmed that the results are favourable for gas sensor applications.

Article
Publication date: 3 November 2022

Xiaoping Lin, Xiaoyan Li, Jiming Yao, Xianghong Li and Jianlin Xu

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible…

Abstract

Purpose

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible CC/NiS/a-NiS electrodes with self-supporting structure by loading hydrothermally synthesized a-NiS particles along with nano-NiS on carbon cloth by electroplating method.

Design/methodology/approach

The effects of current densities, temperatures and pH values on the loading amount and uniformity of the active substances during the plating process were investigated on the basis of optimization of surface morphology, crystalline structure and electrochemical evaluation as the cyclic voltammetry curves, constant current charge–discharge curves and AC impedance.

Findings

The a-NiS particles on CC/NiS/a-NiS were mostly covered by the plated nano-NiS, which behaved as a bulge and provided a larger specific surface area. The CC/NiS/a-NiS electrode prepared with the optimized parameter exhibited a specific capacitance of 115.13 F/g at a current density of 1 A/g and a Coulomb efficiency of 84% at 5 A/g, which is superior to that of CC/NiS electrode prepared by electroplating at a current density of 10 mA/cm2, a temperature of 55°C and a pH of 4, demonstrating its fast charge response of the electrode and potential application in wearable electronics.

Originality/value

This study provides an integrated solution for the development of specifically structured NiS-based electrode for supercapacitor with simple process, low cost and high electrochemical charge/discharge performance, and the simple and easy-to-use method is also applicable to other electrochemically active composites.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 December 2022

Haowei Zhang, Lili Sun, Chengli Song, Ying Liu, Xueting Xuan, Fei Wang, Jing Zhong and Li Sun

Design, fabricate and evaluate all-solid-state wearable sensor systems that can monitor ion concentrations in human sweat to provide real time health analysis and disease…

Abstract

Purpose

Design, fabricate and evaluate all-solid-state wearable sensor systems that can monitor ion concentrations in human sweat to provide real time health analysis and disease diagnosis capabilities.

Design/methodology/approach

A human health monitoring system includes disposable customized flexible electrode array and a compact signal transmission-processing electronic unit.

Findings

Patterned rGO (reduced-graphene oxide) layers can replace traditional metal electrodes for the fabrication of free-standing all solid film sensors to provide improved flexibility, sensitivity, selectivity, and stability in ion concentration monitoring. Electrochemical measurements show the open circuit potential of current selective electrodes exhibit near Nernst responses versus Na+ and K+ ion concentration in sweat. These signals show great stability during a typical measurement period of 3 weeks. Sensor performances evaluated through real time measurements on human subjects show strong correlations between subject activity and sweating levels, confirming high degree of robustness, sensitivity, reliability and practicality of current sensor systems.

Originality/value

In improving flexibility, stability and interfacial coherency of chemical sensor arrays, rGO films have been the developed as a high-performance alternative to conventional electrode with significant cost and processing complexity reduction. rGO supported solid state electrode arrays have been found to have linear potential response versus ion concentration, suitable for electrochemical sensing applications. Current sweat sensor system has a high degree of integration, including electrode arrays, signal processing circuits, and data visualization interfaces.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 April 2023

Mary Grace Cassar, Cristiana Sebu, Michael Pidcock, Shubham Chandak and Brian Andrews

The purpose of this paper is to investigate the design of skin surface electrodes for functional electrical stimulation using an isotropic single layered model of the skin and…

95

Abstract

Purpose

The purpose of this paper is to investigate the design of skin surface electrodes for functional electrical stimulation using an isotropic single layered model of the skin and underlying tissue. A concentric ring electrode geometry was analysed and compared with a conventional configuration, specifically to localise and maximise the activation at depth and minimise the peak current density at the skin surface.

Design/methodology/approach

The mathematical formulation determines the spatial electric potential distribution in the tissue, using the solution to the Laplace equation in the lower half space subject to boundary conditions given by the complete electrode model and appropriate asymptotic decay. Hence, it is shown that the electric potential satisfies a weakly singular Fredholm integral equation of the second kind which is then solved numerically in MATLAB for a novel concentric ring electrode configuration and the conventional two disk side-by-side electrode configuration.

Findings

In both models, the electrode geometry can be optimised to obtain a higher activation and lower maximum current density. The concentric ring electrode configuration, however, provides improved performance over the traditional two disk side-by-side electrode configuration.

Research limitations/implications

In this study, only a single layer of medium was investigated. A comparison with multilayer tissue models and in vivo validation of numerical simulations are required.

Originality/value

The developed mathematical approaches and simulations revealed the parameters that influence nerve activation and facilitated the theoretical comparison of the two electrode configurations. The concentric ring configuration potentially may have significant clinical advantages.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 October 2022

Hyojeong Lee and Yejin Lee

To provide guidelines for the development of textile electrode compression pants that collect reliable signals during surface electromyography (sEMG) measurements and maintain a…

178

Abstract

Purpose

To provide guidelines for the development of textile electrode compression pants that collect reliable signals during surface electromyography (sEMG) measurements and maintain a comfortable level of pressure.

Design/methodology/approach

To increase skin adhesion, 12 textile electrode bands for biceps brachii were prepared according to a combination of variables, namely, the type of the textile electrode, the pressure level and the presence or absence of an electrolyte. The dry textile electrode adopted herein was developed in terms of the size and material of the contact area, and a new electrode design was proposed. After examining the optimal design conditions by measuring the sEMGs during isometric exercise of the biceps brachii, prototype pants were designed based on the design variables that gave the most promising evaluation results. The completed prototype pants were verified through isometric thigh muscle exercises.

Findings

It was confirmed that the textile electrode was capable of EMG measurement with an excellent signal quality. Upon considering the comfort of wearing the device and the cost efficiency of dry electrodes, prototype pants that adopted a fit relative to a light clothing pressure (i.e. thigh: 1.3–1.9 kPa), and combined both silicon and silver thread embroidery with a wide contact area for stability, were designed and their sEMG measurements were confirmed.

Originality/value

In this study, wearable clothing based on textile electrodes was developed to ensure a comfortable fit from the wearer's perspective, and a design method was proposed for the development of low-cost SmartWear electrodes and circuits.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 August 2022

Bin Zhao, Yawei Zhou, Junfeng Qu, Fei Yin, Shaoqing Yin, Yongwei Chang and Wu Zhang

Since carbon nanotubes (CNTs) were discovered by Iijima in 1991, they have gained more and more attention by people because of their unique physical and chemical properties. The…

Abstract

Purpose

Since carbon nanotubes (CNTs) were discovered by Iijima in 1991, they have gained more and more attention by people because of their unique physical and chemical properties. The CNTs have one-dimensional nanostructure, high surface adsorption capacity, good conductivity and electronic ballistic transmission characteristics and therefore have excellent mechanical, electrical, physical and chemical properties. CNTs are ideal basic materials to make nanometer gas sensors. Nanometallic materials function as to enhance electrode activity and promote the electron transfer, so if composite nanometallic materials M (such as Au, Pt, Cu and Pd) and CNTs are used, all kinds of their characters of components would have coeffect. Electrochemical sensors by use of such composite as electrode would have a higher detection sensitivity.

Design/methodology/approach

CNTs were synthesized via chemical vapor deposition technique and were purified afterward. CNTs-M(Pt,Au) suspension was prepared by chemical deposition using spinning disc processor (SDP) and was coated on gold electrode. The modified electrodes were constructed, based on immobilization of glucose oxidase on an Au electrode by electrostatic effect. CNTs-Pt/ glassy carbon electrodes (GCE) electrodes were made by electrochemically deposition of platinum particles on GCE modified by CNTs. The microstructures of the harvested CNTs, CNTs-M (M = Au, Pt) were analyzed under scanning electron microscopy and transmission electron microscopy. The application of the sensor in medical detection has been evaluated.

Findings

The results shown that CNTs-Au biosensors exhibit good reproducibility, stability and fast response to glucose detection, it can be used in the clinic detection of glucose concentration in human serum. Using CNTs-Pt/GCE for formaldehyde detection exhibited high sensitivity and good reproducibility.

Originality/value

This study modified CNTs by using self-assembled techniques through SDP with nano Pt and Au by electrodeposition for the first time. CNTs-Pt/GCE electrode was prepared by depositing platinum particles electrochemically on GCE modified by CNTs. CNTs-Au-modified electrode was prepared by immobilization of glucose oxidase on an Au electrode first by electrostatic effect. Electrochemical behaviors of glucose at CNTs-Au and formaldehyde at CNTs-Pt/GCE were investigated by cyclic voltammetry.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

11 – 20 of over 5000