Search results

1 – 10 of over 1000
Article
Publication date: 1 June 2005

Georgios Priniotakis, Philippe Westbroek, Lieva Van Langenhove and Paul Kiekens

In this paper an electrochemical cell is developed to test and follow up the quality of electrodes made of knitted, woven and non‐woven conductive textile material.

1032

Abstract

Purpose

In this paper an electrochemical cell is developed to test and follow up the quality of electrodes made of knitted, woven and non‐woven conductive textile material.

Design/methodology/approach

This cell is constructed of two electrodes planarly positioned against each other using the support of a PVC tube and two PVC plates. Between the electrodes and the electrolyte special membranes are placed that simulate the human skin.

Findings

This research is a preliminary start of a study to investigate and understand the behaviour of textile electrodes and to gain insight in the inter‐phases electrode‐electrolyte and electrode‐skin‐electrolyte in order to be able to model the system and to use it for detection of parameters and body conditions.

Research limitations/implications

As pointed out earlier, a lot of work still needs to be done but the preliminary work shows that promising possibilities can be offered.

Originality/value

Simulation of human body behaviour during sweat production measured by textile electrodes.

Details

International Journal of Clothing Science and Technology, vol. 17 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 January 2018

L.M. Quej-Ake and A. Contreras

The purpose of this work is to study the corrosion rate of X52 pipeline steel exposed to three types of soils collected in Campeche State in México. The electrochemical evaluation…

Abstract

Purpose

The purpose of this work is to study the corrosion rate of X52 pipeline steel exposed to three types of soils collected in Campeche State in México. The electrochemical evaluation for X52 steel exposed to soils ranging from saturated soil until dry conditions was carried out for a period of 21 days. Owing to its versatility to study the steel corrosion process exposed to different types of soils, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and cyclic voltammetry tests were performed. Additionally, optical and electronic microscopy observations of the steel surface were carried out.

Design/methodology/approach

Electrochemical cell arrangement was described elsewhere (Quej-Ake et al., 2014). Owing to soil being an electrolytic system with high resistivity and impedance, all electrodes were placed as close as possible, and iR-drop compensation was taken into account using two rods of graphite as an auxiliary electrode. In addition, the conductivity of the soil (Rs) obtained from EIS was used to correct the potential of the working electrode according to iR-drop, and an analysis of ohmic drop from the polarization curves was carried out.

Findings

Saturated conditions of the three soils were initially considered as the most corrosive conditions for X52 steel surface. Finally, 21 days of immersion time was taken into account as the more drastic condition. So, according to results, X52 steel exposed to beach sand was more susceptible to the corrosion process (0.092 mm/year). iR corrected was negligible at low over-potentials region in saturated soils, which is inside the linear region of Tafel or the activation region. In addition, high cathodic peak potential value obtained from cyclic voltammetry for X52 steel exposed to saturated soil may be attributed to hydrogen evolution reaction and neutral pH.

Research limitations/implications

The paper has implications for research. It bridges the gap between theory and practice.

Originality/value

Cyclic voltammetry is a really important tool for the electrochemical analysis of the pipeline steel surface exposed to saturated soils, but is not adequate for analysis of steel exposed to dried soils. In addition, the physicochemical results show that fissures, voids and extra-oxygen presence could also affect the electrochemical responses obtained for X52 steel exposed to soils.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 2002

S.J. Mabbutt, G.P. Bierwagen and D.J. Mills

This work investigates the single substrate (SS) technique for obtaining potential and current noise data for electrochemical noise measurement (ENM) analysis. The technique uses…

Abstract

This work investigates the single substrate (SS) technique for obtaining potential and current noise data for electrochemical noise measurement (ENM) analysis. The technique uses a single substrate element, and has shown promise as a useful application for use in the field. The traditional two working electrode approach of obtaining data is hindered by the fact that two electrically isolated substrate elements are required to act as working electrodes. The SS technique addresses this problem, theoretically enabling ENM to be made on any structure using just one electrical connection to the metallic substrate. Results are presented for anti‐corrosive organic coating systems intended for marine applications that have very high resistance values (> 1 × 109ohm‐cm2). In addition data obtained from previous work that looked at a single coat anti‐corrosive primer after a short period of time in immersion and giving Rn values of around 1 × 108ohm‐cm2 are presented. Good agreement is seen between values of Rn obtained from the traditional two working electrode method and those obtained from the single substrate technique over both ranges of resistance.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 October 2019

K.M. Deen, A. Farooq, M. Rizwan, A. Ahmad and W. Haider

This study/paper aims to the authors applied low “Si” ions dose over cp-Ti-2, and the potent dose level was optimized for adequate corrosion resistance and effective proliferation…

Abstract

Purpose

This study/paper aims to the authors applied low “Si” ions dose over cp-Ti-2, and the potent dose level was optimized for adequate corrosion resistance and effective proliferation of stem cells.

Design/methodology/approach

The cp-Ti surface was modified by silicon (Si) ions beam at 0.5 MeV in a Pelletron accelerator. Three different ion doses were applied to the polished samples, and the surface was characterized by XRD and AFM analysis.

Findings

At moderate “Si” ion dose (6.54 × 1012 ions-cm−2), the potential shifted to a noble value. The small “icorr” (1.22 µA.cm−2) and relatively large charge transfer resistance (43.548 kΩ-cm2) in the ringer‘s lactate solution was confirmed through Potentiodynamic polarization and impedance spectroscopy analysis. Compared to cp-Ti and other doses, this dose level also provided the effective proliferation of mesenchymal stem cells.

Originality/value

The dosage levels used were different to previous work and provided the effective proliferation of mesenchymal stem cells.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 December 2004

Xu Chunchun and Hu Gang

Specimens of 304 stainless steel with various martensite contents were prepared by a low temperature (−70°C) elongation method. Optical microscopy and transmission electron…

1277

Abstract

Specimens of 304 stainless steel with various martensite contents were prepared by a low temperature (−70°C) elongation method. Optical microscopy and transmission electron micrography were used to study the phase structure of the samples. A simulated occluded cell (OC) and electrochemical impedance spectroscopy were used to study the chemical and the electrochemical changes within pits on 304 stainless steel containing the different martensite contents. The EIS results showed that the martensite phase decreased not only the solution resistance in pit, but also the polarization resistance value between metal and solution in pit. The composition of the passive film in OC solution was studied by X‐ray photoelectron spectroscopy. It was observed that martensite transformation was a very important factor in changing the composition of the passive film. The martensite phase destroyed the integrality and compactness of the passive film. For these reasons, pit propagation in Type 304 stainless steel was accelerated with increasing martensite content.

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 March 2018

Mohd Rashid, Umesh S. Waware, Afidah A. Rahim and A.M.S. Hamouda

The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid…

Abstract

Purpose

The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium.

Design/methodology/approach

PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique.

Findings

The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9.

Originality/value

CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 June 2022

Mustafa Eken

The aim of this study is to investigate the usability of horsetail, sunflower stalk, wheat stalk and corn stalk ashes as additives in paints and their performance against…

Abstract

Purpose

The aim of this study is to investigate the usability of horsetail, sunflower stalk, wheat stalk and corn stalk ashes as additives in paints and their performance against corrosion resistance when used.

Design/methodology/approach

The ashes of horsetail, sunflower stalk, wheat stalk and corn stalk were investigated in this study in single, binary and ternary combinations with three different percentages as additives in paints. Samples of concrete with any combinations of ashes resisted against the corrosion of steel reinforcements, but horsetail ash proved to be the most effective.

Findings

It can be said that these research results show that the paint containing horsetail ash is an excellent coating material that can be used in paints for the corrosion resistance of steel in reinforced concrete. The corrosion rate decreased with the increase in the amount of reactive SiO2. There was less mass loss with the formation of resistance against corrosion in the horsetail ash added concretes. That is why horsetail ash is one of the most effective options for the aforementioned purpose.

Originality/value

Being cheap and easily obtainable, the materials used for coating in this study are perfect candidates for industrial use.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 January 2023

Dejing Zhou, Mingyang Wang, Yuanyuan Ji, Zhe Liu, Zhiming Gao, Wenbin Hu and Yuhua Guo

This paper aims to investigate the electrochemical corrosion behavior of a five-layer Al alloy composites (4343/4047/3003/4047/4343) with a thickness of 0.2 mm in NaCl solution.

Abstract

Purpose

This paper aims to investigate the electrochemical corrosion behavior of a five-layer Al alloy composites (4343/4047/3003/4047/4343) with a thickness of 0.2 mm in NaCl solution.

Design/methodology/approach

Electrochemical impedance spectroscopy, polarization curve and morphology analyses were used to study the corrosion behavior of the Al alloy composites from cross-sectional and plane directions.

Findings

The corrosion resistance of the surface from the plane direction was higher than that from the cross sections. Si-enrich particles were observed in the outer 4047/4343 layer, and AlFeCuMnBi phases were identified in the core 3003 layer. The galvanic coupling between the Si-enrich particle and the Al matrix accelerated the dissolution Al matrix.

Originality/value

This work lays the experimental foundation for corrosion mechanism of the Al alloy composite plate.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 August 2020

Oriana D'Alessandro, Christian Eduardo Byrne, Gonzalo Selmi and Cecilia Deyá

This paper aims to formulate and prepare a series of alkyd paints with new anticorrosive pigments, eco-friendly to the environment, based on a natural zeolitic rock modified by…

Abstract

Purpose

This paper aims to formulate and prepare a series of alkyd paints with new anticorrosive pigments, eco-friendly to the environment, based on a natural zeolitic rock modified by ion exchange to incorporate passivating cations.

Design/methodology/approach

The electrochemical characterization of the painted steel was carried out by conductivity measurements, linear polarization tests, measurements of the corrosion potential and electrochemical noise measurements. Besides, accelerated tests in standard environmental chambers were also carried out.

Findings

The results show that clinoptilolite–mordenite-based pigments incorporated in the paint provide acceptable anticorrosive properties, taking into account their low environmental impact and the use of a natural resource of low cost. The inhibitory efficiency of ZLa is higher than 80% and of ZPr is close to 70%. The electrochemical assays of the coated panels with the alkyd paints ZLa and ZPr shows similar behavior.

Research limitations/implications

In this work, good results were obtained with an alkyd resin, but other resins could be tested. Paints could also be formulated with modified zeolites as a complement to others traditional anticorrosive pigments.

Practical implications

These paints could be used for the protection of metal structures in low corrosive environments.

Originality/value

There are not many published works using zeolites as anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 50 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 July 2021

Abbas Hashemizadeh and Mohammad Javad Ameri

This study aims to describe the effect of magnetic field (MF) on the corrosion rate of N-80 carbon steel [N-80 carbon steel (CS)] in concentrated (12.5 Wt.%, 3.8 M) hydrochloric…

Abstract

Purpose

This study aims to describe the effect of magnetic field (MF) on the corrosion rate of N-80 carbon steel [N-80 carbon steel (CS)] in concentrated (12.5 Wt.%, 3.8 M) hydrochloric acid (HCl) using gravimetric weight loss (WL) measurements and potentiodynamic polarization (PDP) in various conditions at ambient temperature.

Design/methodology/approach

The effects of MF intensity, magnetization time and elapsed time on corrosion rate (CR) reduction (η) were studied.

Findings

The experimental results show that pre-magnetization of HCl sharply decreases the corrosion rate of N-80 carbon steel (CS) in acid. The maximum η was found to be 94%. The surface of CS was analyzed with scanning electron microscope in normal and magnetized acid.

Originality/value

To the best of the authors’ knowledge, no studies have delved into the effects of magnetization on the corrosion rate of CS in concentrated HCl solutions. All of the previous research studies deal with an external MF that is applied on the reaction cell, but the magnetization of fluid before coming in contact with CS is investigated for the first time. In the present work, the influence of MF on the corrosion rate of CS in HCl is illustrated using gravimetric WL and PDP methods. The effects of MF intensity as well as period of magnetization and elapsed time were verified in more than 35 tests.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 1000