Search results

1 – 10 of 831
Article
Publication date: 15 May 2009

M.A. EL‐Hakiem

The purpose of this paper is to highlight the effect of combined heat and mass transfer characteristics of magnetohydrodynamic (MHD) free convection flow of an electrically

Abstract

Purpose

The purpose of this paper is to highlight the effect of combined heat and mass transfer characteristics of magnetohydrodynamic (MHD) free convection flow of an electrically conducting Newtonian fluid on circular cylinder with uniform heat/mass flux, taking into consideration the effects of uniform transverse magnetic field and thermal radiation.

Design/methodology/approach

An analysis is performed to study the momentum, combined heat and mass transfer characteristics of MHD free convection flow past a circular cylinder surface under the effect of thermal radiation with uniform heat and mass flux. By using Lie group method, the infinitesimal generators of governing equations are calculated. Using the resulting generators for the boundary value problem, the equations are transformed into an ordinary differential system. Numerical solutions of the outcoming non‐linear differential equations are found by using a combination of a Runge–Kutta algorithm and shooting technique.

Findings

Application of a magnetic field normal to the flow of an electrically conducting fluid gives rise to a resistive force that acts in the direction opposite to that of the flow. This resistive force tends to slow down the motion of the fluid along the cylinder and causes increases in its temperature and concentration and hence the respective changes in the wall shear stress, local Nusselt and Sherwood numbers as the magnetic parameter, respectively are changed with various values of angle which is measured in degrees from the front stagnation point on the surface. It is noted that these coefficients reduced as the magnetic parameter increases. Also, the effect of thermal radiation works as a heat source and so the quantity of heat added to the fluid increases, therefore the local Nusselt number reduced as the radiation parameter increases.

Research limitations/implications

An analysis is performed to study the momentum, combined heat and mass transfer characteristics of MHD free convection flow of an electrically conducting Newtonian fluid on circular cylinder with uniform heat/mass flux with the effects of uniform transverse magnetic field and thermal radiation.

Practical implications

This paper provides a very useful source of coefficient of heat and mass transfer values for engineers planning to transfer heat and mass by using electrically conducting gases with uniform heat/mass flux.

Originality/value

The combined heat and mass transfer of an electrically conducting gases on free convection flow in the presence of magneto and thermal radiation effects are investigated and can be used by different engineers working on industry, geothermal, geophysical, technological and engineering applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2013

Anwar Hossain and Rama Subba Reddy Gorla

The paper's aim is to investigate the mixed convection flow of an electrically conducting and viscous incompressible fluid past an isothermal vertical surface with Joule heating…

Abstract

Purpose

The paper's aim is to investigate the mixed convection flow of an electrically conducting and viscous incompressible fluid past an isothermal vertical surface with Joule heating in the presence of a uniform transverse magnetic field fixed relative to the surface. It was assumed that the electrical conductivity of the fluid varies linearly with the transverse velocity component.

Design/methodology/approach

The governing boundary layer equations were solved numerically. The boundary layer equations were first reduced to a convenient form by using two different formulations, namely, (i) the stream function formulation (SFF) and (ii) primitive variable formulation (PVF).

Findings

It was observed that both the local shear‐stress and Nusselt number increase with increasing value of local magnetic parameter, ξ.

Research limitations/implications

In the present investigation, we investigated the effects of Joule heating on MHD mixed convection boundary layer flow of an electrically conducting viscous incompressible fluid past an isothermal vertical flat plate in the presence of a transverse magnetic field fixed relative to the surface of the plate. The analysis was valid for a steady, two dimensional laminar flow. An extension to three dimensional flow case is left for future work.

Practical implications

Here we have analyzed the problem of mixed convection flow of electrically conducting and viscous incompressible fluid past an isothermal vertical surface with viscous and Joule heating in presence of a uniform transverse magnetic field fixed relative to the surface. The work would be useful in the thermal management of heat transfer devices.

Originality/value

The results of this study may be of interest to engineers interested in heat exchanger design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 June 2020

Asgar Ali, R.N. Jana and S. Das

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over…

Abstract

Purpose

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over an exponentially stretching sheet under the effect of a strong variable magnetic field and thermal radiation. Flow formation is developed using the rheological expression of a power-law fluid.

Design/methodology/approach

The nonlinear partial differential equations describing the flow are transformed into the nonlinear ordinary differential equations by employing the local similarity transformations and then solved numerically by an effective numerical approach, namely, fourth-order Runge–Kutta integration scheme, along with the shooting iteration technique. The numerical solution is computed for different parameters by using the computational software MATLAB bvp4c. The bvp4c function uses the finite difference code as the default. This method is a fourth-order collocation method. The impacts of thermophysical parameters on velocity and temperature distributions, skin friction coefficients and Nusselt number in the boundary layer regime are exhibited through graphs and tables and deliberated with proper physical justification.

Findings

Our investigation conveys that Hall current has an enhancing behavior on velocity profiles and reduces skin friction coefficients. An increase in the power-law index is observed to deplete velocity and temperature evolution. The temperature for the pseudo-plastic (shear-thinning) fluid is relatively higher than the corresponding temperature of the dilatant (shear-thickening) fluid. The streamlines are more distorted and have low intensity near the surface of the sheet for the dilatant fluid than the pseudo-plastic fluid.

Social implications

The study is pertinent to the expulsion of polymer sheet and photographic films, hydrometallurgical industry, electrically conducting polymer dynamics, magnetic material processing, solutions and melts of polymer processing, purification of molten metals from nonmetallic. The results obtained in this work can be relevant in fluid mechanics and heat transfer applications.

Originality/value

The present problem has, to the authors' knowledge, not communicated thus far in the scientific literature. A comparative study with the published works is conducted to verify the accuracy of the present study. The results obtained in this analysis are significant in providing the standards for validating the accuracies of some numerical or empirical methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 April 2020

B.J. Gireesha and A. Roja

Microfluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such…

Abstract

Purpose

Microfluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such as micromixers, micropumps, cooling systems for microelectromechanical systems (MEMS) micro heat exchangers, etc. Lower cost with better thermal performance is the main objective of these devices. Therefore, in this study, the entropy generation in an electrically conducting Casson fluid flow through an inclined microchannel with hydraulic slip and the convective condition hves been numerically investigated. Aspects of viscous dissipation, natural convection, joule heating, magnetic field and uniform heat source/sink are used

Design/methodology/approach

Suitable non-dimensional variables are used to reduce the non-linear system of ordinary differential equations, and then this system is solved numerically using Runge-Kutta-Fehlberg fourth fifth order method along with shooting technique. The obtained numerical solutions of the fluid velocity and temperature are used to characterize the entropy generation and Bejan number. Also, the Nusselt number and skin friction coefficient for various values of parameters are examined in detail through graphs. The obtained present results are compared with the existing one which is perfectly found to be in good agreement.

Findings

It is established that the production of the entropy can be improved with the aspects of joule heating, viscous dissipation and internal heat source/sink. The entropy generation enhances for increasing values of Casson Parameter (β) and Biot number (Bi). Furthermore, it is interestingly noticed that the enhancement of Reynolds number and uniform heat source/sink shows the dual behaviour of the entropy generation due to significant influence of the viscous forces in the region close to the channel walls. It was observed that increasing behaviour of the heat transfer rate for enhancement values of the Eckert number and heat source/sink ratio parameter and the drag force are retarded with higher estimations of Reynolds number.

Originality/value

Entropy generation analysis on MHD Casson fluid flow through an inclined microchannel with the aspects of convective, Joule heating, viscous dissipation, magnetism, hydraulic slip and internal heat source/sink has been numerically investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 August 2014

Sahin Ahmed and Ali J. Chamkha

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in…

Abstract

Purpose

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in presence of a strong transverse magnetic filled and with the application of thermal radiation. In this investigation, the fluid is considered to be of viscous, electrically conducting, Newtonian and radiating and is optically thin with a relatively low density. Excellent agreement is obtained for exact solutions with those of previously published works.

Design/methodology/approach

In this investigation, a closed form analytical method based on the complex notations for the velocity, temperature and the pressure is developed to solve the governing coupled, non-linear partial differential equations. The accuracy and effectiveness of the method are demonstrated.

Findings

Interestingly observed that, the Lorentizian body force is not act as a drag force as in conventional MHD flows, but as an aiding body force and this will serve to accelerate the flow and boost the primary velocities. Due to the large rotation of the channel, the primary velocities are become flattered and shift towards the walls of the channel. With a rise in Darcian drag force, flow velocity and shear stress are found to reduce. Moreover, increasing thermal radiation and rotation of the channel strongly depress the shear stress, and maximum flow reversal, i.e. back flow is observed due to large Darcian resistance, thermal radiation and rotation.

Research limitations/implications

The analysis is valid for unsteady, two-dimensional laminar flow of an optically thick no-gray gas, electrically conducting, and Newtonian fluid past an isothermal vertical surface adjacent to the Darcian regime with variable surface temperature. An extension to three-dimensional flow case is left for future work.

Practical implications

Practical interest of such study includes applications in magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors, magnetic suppression of molten semi-conducting materials and meteorology and in many branches of engineering and science. It is well known that the effect of thermal radiation is important in space technology and high-temperature processes. Thermal radiation also plays an important role in controlling heat transfer process in polymer processing industry.

Originality/value

The paper presents useful conclusions with the help of graphical results obtained from studying exact solutions based on complex notations for Darcian drag force, rotation of the channel and conduction-radiation heat transfer interaction by unsteady rotational flow in a vertical porous channel embedded in a Darcian porous regime under the application hydromagnetic force. The results of this study may be of interest to engineers for heat transfer augmentation and drag reduction in heat exchangers as well as MHD boundary layer control of re-entry vehicles, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 November 2019

Atul Kumar Ray and Vasu B.

This paper aims to examine the influence of radiative nanoparticles on incompressible electrically conducting upper convected Maxwell fluid (rate type fluid) flow over a…

Abstract

Purpose

This paper aims to examine the influence of radiative nanoparticles on incompressible electrically conducting upper convected Maxwell fluid (rate type fluid) flow over a convectively heated exponential stretching sheet with suction/injection in the presence of heat source taking chemical reaction into account. Also, a comparison of the flow behavior of Newtonian and Maxwell fluid containing nanoparticles under the effect of different thermophysical parameters is elaborated. Velocity, temperature and nanoparticle volume fractions are assumed to have exponential distribution at boundary. Buongiorno model is considered for nanofluid transport.

Design/methodology/approach

The equations, which govern the flow, are reduced to ordinary differential equations using suitable transformation. The transformed equations are solved using a robust homotopy analysis method. The convergence of the homotopy series solution is explicitly discussed. The present results are compared with the results reported in the literature and are found to be in good agreement.

Findings

It is observed from the present study that larger relaxation time leads to slower recovery, which results in a decrease in velocity, whereas temperature and nanoparticle volume fraction is increased. Maxwell nanofluid has lower velocity with higher temperature and nanoparticle volume fraction when compared with Newtonian counterpart. Also, the presence of magnetic field leads to decrease the velocity of the nanofluid and enhances the skin coefficient friction. The existence of thermal radiation and heat source enhance the temperature. Further, the presence of chemical reaction leads to decrease in nanoparticle volume fraction. Higher value of Deborah number results in lower the rate of heat and mass transfer.

Originality/value

The novelty of present work lies in understanding the impact of fluid elasticity and radiative nanoparticles on the flow over convectively heated exponentially boundary surface in the presence of a magnetic field using homotopy analysis method. The current results may help in designing electronic and industrial applicants. The present outputs have not been considered elsewhere.

Article
Publication date: 4 July 2016

Madhu Macha, Kishan Naikoti and Ali J Chamkha

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying…

Abstract

Purpose

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power-law model over a non-linear stretching sheet under the influence of thermal radiation with heat source/sink.

Design/methodology/approach

The transverse magnetic field is applied normal to the sheet. The model used for the nanofluid incorporates the effects of Brownian motion with thermophoresis in the presence of thermal radiation. On this regard, thermophoresis effect on convective heat transfer on nanofluids are investigated simultaneously. The governing partial differential equations are reduced to ordinary differential equations by suitable similarity transformations which are solved numerically by variational finite element method.

Findings

The computations carried out for some values of the power-law index, magnetic parameter, radiation parameter, Brownian motion and thermophoresis. The effect of these parameters on the velocity, temperature and nanoparticle volume fraction distribution are presented graphically. The skin friction coefficient, Nusselt number and Sherwood number for various values of the flow parameters of the problem are also presented.

Originality/value

To the best of the authors’ knowledge, no investigations has been reported regarding the study of non-Newtonian nanofluids which obeying power-law model over a nonlinear stretching sheet. The principal aim of this paper is to study the boundary layer MHD flow of a non-Newtonian power-law model over a non-linear stretching sheet on a quotient viscous incompressible electrically conducting with a nanofluid.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 September 2021

S. Das, A.S. Banu and R.N. Jana

In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous…

Abstract

Purpose

In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous problems that cannot be enlightened by uniform wall temperature. To explore such physical phenomena researchers incorporate non-uniform or ramped temperature conditions at the boundary, the purpose of this paper is to achieve the closed-form solution of a time-dependent magnetohydrodynamic (MHD) boundary layer flow with heat and mass transfer of an electrically conducting non-Newtonian Casson fluid toward an infinite vertical plate subject to the ramped temperature and concentration (RTC). The consequences of chemical reaction in the mass equation and thermal radiation in the energy equation are encompassed in this analysis. The flow regime manifests with pertinent physical impacts of the magnetic field, thermal radiation, chemical reaction and heat generation/absorption. A first-order chemical reaction that is proportional to the concentration itself directly is assumed. The Rosseland approximation is adopted to describe the radiative heat flux in the energy equation.

Design/methodology/approach

The problem is formulated in terms of partial differential equations with the appropriate physical initial and boundary conditions. To make the governing equations dimensionless, some suitable non-dimensional variables are introduced. The resulting non-dimensional equations are solved analytically by applying the Laplace transform method. The mathematical expressions for skin friction, Nusselt number and Sherwood number are calculated and expressed in closed form. Impacts of various associated physical parameters on the pertinent flow quantities, namely, velocity, temperature and concentration profiles, skin friction, Nusselt number and Sherwood number, are demonstrated and analyzed via graphs and tables.

Findings

Graphical analysis reveals that the boundary layer flow and heat and mass transfer attributes are significantly varied for the embedded physical parameters in the case of constant temperature and concentration (CTC) as compared to RTC. It is worthy to note that the fluid velocity is high with CTC and lower for RTC. Also, the fluid velocity declines with the augmentation of the magnetic parameter. Moreover, growth in thermal radiation leads to a declination in the temperature profile.

Practical implications

The proposed model has relevance in numerous engineering and technical procedures including industries related to polymers, area of chemical productions, nuclear energy, electronics and aerodynamics. Encouraged by such applications, the present work is undertaken.

Originality/value

Literature review unveils that sundry studies have been carried out in the presence of uniform wall temperature. Few studies have been conducted by considering non-uniform or ramped wall temperature and concentration. The authors are focused on an analytical investigation of an unsteady MHD boundary layer flow with heat and mass transfer of non-Newtonian Casson fluid past a moving plate subject to the RTC at the plate. Based on the authors’ knowledge, the present study has, so far, not appeared in scientific communications. Obtained analytical solutions are verified by considering particular cases of the published works.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2020

S. Das, R.R. Patra and R.N. Jana

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically

Abstract

Purpose

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.

Findings

Results reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.

Originality/value

Till now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2001

Jaw‐Ren Lin

The effect of a transverse magnetic field on the squeeze film behaviors between two parallel annular disks lubricated within an electrically conducting fluid is studied. The…

Abstract

The effect of a transverse magnetic field on the squeeze film behaviors between two parallel annular disks lubricated within an electrically conducting fluid is studied. The modified Reynolds equation governing the squeeze film pressure is derived by using the continuity equation and the magneto‐hydrodynamic (MHD) motion equations. According to the results obtained, the influence of magnetic fields signifies an enhancement in the squeeze film pressure. On the whole, the magnetic field effect characterized by the Hartmann number provides an increase in value of the load‐carrying capacity and the response time as compared to the classical non‐conducting lubricant case. It improves the MHD squeeze film characteristics of the system.

Details

Industrial Lubrication and Tribology, vol. 53 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 831