Search results

1 – 10 of 140
Open Access
Article
Publication date: 25 July 2019

Juliana Padilha Leitzke and Hubert Zangl

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such…

932

Abstract

Purpose

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such as autarkic wireless sensors, which require a low computational complexity reconstruction approach and a low number of electrodes. This paper also investigates how the electrode design can affect the reconstruction results in tomography.

Design/methodology/approach

EITS is performed by using a non-iterative method called optimal first order approximation. In addition to that, a planar electrode geometry is used instead of the traditional circular electrode geometry. Such a structure allows the system to identify materials placed on the region above the sensor, which do not need to be confined in a pipe. For the optimization, the mean squared error (MSE) between the reference images and the obtained reconstructed images was calculated.

Findings

The authors demonstrate that even with a low number of four electrodes and a low complexity reconstruction algorithm, a reasonable reconstruction of water and ice fractions is possible. Furthermore, it is shown that an optimal distribution of the sensor electrodes can help to reduce the MSE without any costs in terms of computational complexity or power consumption.

Originality/value

This paper shows through simulations that the reconstruction of ice and water mixtures is possible and that the electrode design is a topic of great importance, as they can significantly affect the reconstruction results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 5 January 2022

Alex Mason, Dmytro Romanov, L. Eduardo Cordova-Lopez, Steven Ross and Olga Korostynska

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of…

2283

Abstract

Purpose

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of all or many processes is seen as the way forward, with robots performing various tasks instead of people. Meat cutting is one of these tasks. Smart novel solutions, including smart knives, are required, with the smart knife being able to analyse and predict the meat it cuts. This paper aims to review technologies with the potential to be used as a so-called “smart knife” The criteria for a smart knife are also defined.

Design/methodology/approach

This paper reviews various technologies that can be used, either alone or in combination, for developing a future smart knife for robotic meat cutting, with possibilities for their integration into automatic meat processing. Optical methods, Near Infra-Red spectroscopy, electrical impedance spectroscopy, force sensing and electromagnetic wave-based sensing approaches are assessed against the defined criteria for a smart knife.

Findings

Optical methods are well established for meat quality and composition characterisation but lack speed and robustness for real-time use as part of a cutting tool. Combining these methods with artificial intelligence (AI) could improve the performance. Methods, such as electrical impedance measurements and rapid evaporative ionisation mass spectrometry, are invasive and not suitable in meat processing since they damage the meat. One attractive option is using athermal electromagnetic waves, although no commercially developed solutions exist that are readily adaptable to produce a smart knife with proven functionality, robustness or reliability.

Originality/value

This paper critically reviews and assesses a range of sensing technologies with very specific requirements: to be compatible with robotic assisted cutting in the meat industry. The concept of a smart knife that can benefit from these technologies to provide a real-time “feeling feedback” to the robot is at the centre of the discussion.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 21 December 2021

Vahid Badeli, Sascha Ranftl, Gian Marco Melito, Alice Reinbacher-Köstinger, Wolfgang Von Der Linden, Katrin Ellermann and Oszkar Biro

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced…

Abstract

Purpose

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced multi-sensors impedance cardiography (ICG) method has been applied to classify signals from healthy and sick patients.

Design/methodology/approach

A 3D numerical model consisting of simplified organ geometries is used to simulate the electrical impedance changes in the ICG-relevant domain of the human torso. The Bayesian probability theory is used for detecting an aortic dissection, which provides information about the probabilities for both cases, a dissected and a healthy aorta. Thus, the reliability and the uncertainty of the disease identification are found by this method and may indicate further diagnostic clarification.

Findings

The Bayesian classification shows that the enhanced multi-sensors ICG is more reliable in detecting aortic dissection than conventional ICG. Bayesian probability theory allows a rigorous quantification of all uncertainties to draw reliable conclusions for the medical treatment of aortic dissection.

Originality/value

This paper presents a non-invasive and reliable method based on a numerical simulation that could be beneficial for the medical management of aortic dissection patients. With this method, clinicians would be able to monitor the patient’s status and make better decisions in the treatment procedure of each patient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2430

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 11 May 2022

Hui Wang, Qunzhan Li, Wei Liu, Chuang Wang and Tongtong Liu

The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for…

Abstract

Purpose

The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network. This paper aims to study the scheme composition and power supply distance (PSD) of the scheme.

Design/methodology/approach

Based on the structure of parallel traction network (referred to as “cable traction network (CTN)”), the power supply modes (PSMs) are divided into cable + direct PSM and cable + autotransformer (AT) PSM (including Japanese mode, French mode and new mode). Taking cable + Japanese AT PSM as an example, the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed. On the basis of establishing the equivalent circuit model and the chain circuit model of CTN, taking the train working voltage as the constraint condition, and based on the power flow calculation of multiple train loads, the calculation formula and process for determining the PSD of CTN are given. The impedance and PSD of CTN under the cable + AT PSM are simulated and analyzed, and a certain line is taken as an example to compare the scheme design.

Findings

Results show that the equivalent impedance of CTN under the cable + AT PSM is smaller, and the PSD is about 2.5 times of that under the AT PSM, which can effectively increase the PSD and the flexibility of external power supply location.

Originality/value

The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 1 February 2005

4585

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 7 September 2015

Hubert Zangl and Stephan Mühlbacher-Karrer

The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images in electrical tomography. This is in particular important with respect to object…

1051

Abstract

Purpose

The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images in electrical tomography. This is in particular important with respect to object detection in electrical tomography applications.

Design/methodology/approach

The authors suggest to apply the Box-Cox transformation in Bayesian linear minimum mean square error (BMMSE) reconstruction to better accommodate the non-linear relation between the capacitance matrix and the permittivity distribution. The authors compare the results of the original algorithm with the modified algorithm and with the ground truth in both, simulation and experiments.

Findings

The results show a reduction of 50 percent of the mean square error caused by artifacts in low permittivity regions. Furthermore, the algorithm does not increase the computational complexity significantly such that the hard real time constraints can still be met. The authors demonstrate that the algorithm also works with limited observations angles. This allows for object detection in real time, e.g., in robot collision avoidance.

Originality/value

This paper shows that the extension of BMMSE by applying the Box-Cox transformation leads to a significant improvement of the quality of the reconstruction image while hard real time constraints are still met.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 22 June 2012

312

Abstract

Details

Sensor Review, vol. 32 no. 3
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 18 May 2010

Pete Starkey

107

Abstract

Details

Circuit World, vol. 36 no. 2
Type: Research Article
ISSN: 0305-6120

Open Access
Article
Publication date: 7 August 2019

Markus Neumayer, Thomas Suppan and Thomas Bretterklieber

The application of statistical inversion theory provides a powerful approach for solving estimation problems including the ability for uncertainty quantification (UQ) by means of…

Abstract

Purpose

The application of statistical inversion theory provides a powerful approach for solving estimation problems including the ability for uncertainty quantification (UQ) by means of Markov chain Monte Carlo (MCMC) methods and Monte Carlo integration. This paper aims to analyze the application of a state reduction technique within different MCMC techniques to improve the computational efficiency and the tuning process of these algorithms.

Design/methodology/approach

A reduced state representation is constructed from a general prior distribution. For sampling the Metropolis Hastings (MH) Algorithm and the Gibbs sampler are used. Efficient proposal generation techniques and techniques for conditional sampling are proposed and evaluated for an exemplary inverse problem.

Findings

For the MH-algorithm, high acceptance rates can be obtained with a simple proposal kernel. For the Gibbs sampler, an efficient technique for conditional sampling was found. The state reduction scheme stabilizes the ill-posed inverse problem, allowing a solution without a dedicated prior distribution. The state reduction is suitable to represent general material distributions.

Practical implications

The state reduction scheme and the MCMC techniques can be applied in different imaging problems. The stabilizing nature of the state reduction improves the solution of ill-posed problems. The tuning of the MCMC methods is simplified.

Originality/value

The paper presents a method to improve the solution process of inverse problems within the Bayesian framework. The stabilization of the inverse problem due to the state reduction improves the solution. The approach simplifies the tuning of MCMC methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 140