Search results

1 – 10 of 192
Article
Publication date: 27 February 2023

Masume Khodsuz and Valiollah Mashayekhi

This paper aims to focus on the inclusion of the frequency behavior of grounding system effect on surge arrester (SA) model parameters’ estimation.

Abstract

Purpose

This paper aims to focus on the inclusion of the frequency behavior of grounding system effect on surge arrester (SA) model parameters’ estimation.

Design/methodology/approach

The grounding system impedance and its frequency behavior are the factors that have influence on the SA performance. Up to now, the grounding system impedance effect and the frequency behavior of the soil parameters have not been studied for the estimation of the parameters of the SA frequency-dependent model. In this paper, the grounding system’s influence on the SA dynamic model has been simulated for rod- and counterpoise-shaped electrodes. Particle swarm optimization with a grey wolf optimization algorithm has been implemented as an optimization algorithm to adjust the parameters of the SA dynamic model.

Findings

The results show that the frequency behavior of the grounding impedance and soil electrical parameters can impress the optimum parameters of the SA frequency-dependent model and should be considered for more reliable results. Also, the results evidence that the proposed optimization method provides more accurate results compared to other optimization methods.

Originality/value

To the best of the authors’ knowledge, this work is one of the first attempts to investigate the effect of frequency grounding system on SA frequency-dependent model parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 April 2023

Mary Grace Cassar, Cristiana Sebu, Michael Pidcock, Shubham Chandak and Brian Andrews

The purpose of this paper is to investigate the design of skin surface electrodes for functional electrical stimulation using an isotropic single layered model of the skin and…

86

Abstract

Purpose

The purpose of this paper is to investigate the design of skin surface electrodes for functional electrical stimulation using an isotropic single layered model of the skin and underlying tissue. A concentric ring electrode geometry was analysed and compared with a conventional configuration, specifically to localise and maximise the activation at depth and minimise the peak current density at the skin surface.

Design/methodology/approach

The mathematical formulation determines the spatial electric potential distribution in the tissue, using the solution to the Laplace equation in the lower half space subject to boundary conditions given by the complete electrode model and appropriate asymptotic decay. Hence, it is shown that the electric potential satisfies a weakly singular Fredholm integral equation of the second kind which is then solved numerically in MATLAB for a novel concentric ring electrode configuration and the conventional two disk side-by-side electrode configuration.

Findings

In both models, the electrode geometry can be optimised to obtain a higher activation and lower maximum current density. The concentric ring electrode configuration, however, provides improved performance over the traditional two disk side-by-side electrode configuration.

Research limitations/implications

In this study, only a single layer of medium was investigated. A comparison with multilayer tissue models and in vivo validation of numerical simulations are required.

Originality/value

The developed mathematical approaches and simulations revealed the parameters that influence nerve activation and facilitated the theoretical comparison of the two electrode configurations. The concentric ring configuration potentially may have significant clinical advantages.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 February 2024

Borja López-Alonso, Pablo Briz, Hector Sarnago, José M. Burdio and Oscar Lucia

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

20

Abstract

Purpose

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

Design/methodology/approach

The proposed method has been developed based on a previously designed electroporation system, which has the capabilities to modify the electric field distribution in real time, and to estimate the impedance distribution. Taking into consideration the features of the system and biological tissues, the problem has been addressed in three phases: modeling, control system design and simulation testing. In the first phase, a finite element analysis model has been proposed to reproduce the electric field distribution within the hepatic tissue, based on the characteristics of the electroporation system. Then, a control strategy has been proposed with the goal of ensuring complete ablation while minimizing the affected volume of healthy tissue. Finally, to check the feasibility of the proposal, several representative cases have been simulated, and the results have been compared with those obtained by a traditional system.

Findings

The proposed method achieves the proposed goal, as part of a complex electroporation system designed to improve the targeting, effectiveness and control of electroporation treatments and serve to demonstrate the feasibility of developing new electroporation systems capable of adapting to changes in the preplanning of the treatment in real-time.

Originality/value

The work presents a thorough study of control method to multi-output multi-electrode electroporation system by mean of a rigorous numerical simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 April 2022

Sumeet Khalid, Faisal Khan, Basharat Ullah, Zahoor Ahmad and Siddique Akbar

This paper aims to provide an overview of the recent developments and new topologies of single-phase moving magnet linear oscillating actuators (MMLOAs). The key advantage of the…

Abstract

Purpose

This paper aims to provide an overview of the recent developments and new topologies of single-phase moving magnet linear oscillating actuators (MMLOAs). The key advantage of the MMLOA when compared with conventional LOA is the absence of screws, gears and crankshaft mechanism, which results in fewer mechanical parts, simple structure, easy fabrication, lower noise levels and negligible frictional losses.

Design/methodology/approach

The review included papers up to August 2021. The structural designs of alternative topologies are deliberated in detail, and their relative merits and demerits are evaluated. Specific design issues, including pole and tooth number combinations, stroke length, magnet pole ratio and split ratio, are investigated. The imperative phenomena of the resonance, as well as the adjustable stroke, are also discussed in detail.

Findings

The electromagnetic performance in terms of thrust force of selected MMLOA topologies is compared. It is observed that the MMLOA with flux bridge topology has the highest thrust force of 365 N because of the large volume of the permanent magnets (PMs) used, which consequently increased the mass of the mover but based on overall performance analysis, single-phase end ferromagnetic Halbach surface-mounted PM LOA has the highest efficiency around 92%.

Originality/value

This review provides a comparative analysis for different tubular MMLOA topologies based on design construction and their electromagnetic performances.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 July 2023

Anagi Balachandra, Roz-Ud-Din Nassar and Parviz Soroushian

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened…

Abstract

Purpose

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened, self-healing and hybrid epoxy coatings, for application on steel substrates.

Design/methodology/approach

The corrosion resistance of these coatings was evaluated in a highly corrosive environment of salt fog spray for 2,500 h of exposure. Electrochemical impedance spectroscopy (EIS) measurements in sustained exposure to NaCl in a saturated Ca(OH)2 solution, rust creepage measurements at the location of scribe formed in the coatings and adhesion strength test were used to assess the performance of the innovative coatings. Commercially available marine-grade protective epoxy coatings were used as the reference coatings.

Findings

The test results showed that the modified epoxy coatings exhibited excellent corrosion resistance when exposed to an aggressive environment for extended periods. The EIS measurements, rust creepage measurements, pull-off strength and visual appearance of the aged modified–epoxy–coated specimens confirmed the enhanced corrosion resistance of the modified epoxy coatings.

Originality/value

Among the three types of modified coatings, the hybrid epoxy coating stands out to be the best performer.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 September 2021

Jitendra B. Zalke, Sandeepkumar R. Pandey, Ruchir V. Nandanwar, Atharva Sandeep Pande and Pravin Balu Nikam

The purpose of this research paper is to explore the possibility to enhance the power transfer from piezoelectric energy harvester (PEH) source to the load. As the proposed…

Abstract

Purpose

The purpose of this research paper is to explore the possibility to enhance the power transfer from piezoelectric energy harvester (PEH) source to the load. As the proposed gyrator-induced voltage flip technique (GIVFT) does not require bulky components such as physical inductors, it is easily realizable in small integrated circuits (IC) package thereby offering performance benefits, reducing area overhead and providing cost benefits for constrained self-powered autonomous Internet-of-Things (IoT) applications.

Design/methodology/approach

This paper presents an inductorless interface circuit for PEH. The proposed technique is called GIVFT and is demonstrated using active elements. The authors use gyrator to induce voltage flip at the output side of PEH to enhance the charge extraction from PEH. The proposed technique uses the current-voltage (I-V) relationship of gyrator to get appropriate phasor response necessary to induce the voltage flip at the output of PEH to gain power transfer enhancement at the load.

Findings

The experimental results show the efficacy of the GIVFT realization for enhanced power extraction. The authors have compared their proposed design with popular earlier reported interface circuits. Experimentally measured performance improvement is 1.86×higher than the baseline comparison of full-wave bridge rectifier circuit. The authors demonstrated a voltage flip using GIVFT to gain power transfer improvement in piezoelectric energy harvesting.

Originality/value

To the best of the authors’ knowledge, pertaining to the field of PEH, this is the first reported GIVFT based on the I-V relationship of the gyrator. The proposed approach could be useful for constrained self-powered autonomous IoT applications, and it could be of importance in guiding the design of new interface circuits for PEH.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

134

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 5 January 2024

Divya Shree M. and Srinivasa Rao Inabathini

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics…

Abstract

Purpose

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics on a low-loss Taconic substrate and analyze using the coupled theory of resonators for UWB range covering L, S, C and X bands for radars, global positioning system (GPS) and satellite communication applications.

Design/methodology/approach

The filter is designed with a bent coupled transmission line on the top copper layer. Defected ground structures (DGSs) like complementary split ring resonators (CSRRs), V-shaped resonators, rectangular slots and quad circle slots (positioned inwards and outwards) are etched in the ground layer of the filter. The circular orientation of V-shaped resonators adds compactness when linearly placed. By arranging the quad circle slots outwards and inwards at the corner and core of the ground plane, respectively, two filters (Filters I and II) are designed, fabricated and measured. These two filters feature a quasi-elliptic response with transmission zeros (TZs) on either side of the bandpass response, making it highly selective and reflection poles (RPs), resulting in a low-loss filter response. The transmission line model and coupled line theory are implemented to analyze the proposed filters.

Findings

Two filters by placing the quad circle slots outwards (Filter I) and inwards (Filter II) were designed, fabricated and tested. The fabricated model (Filter I) provides transmission with a maximum insertion loss of 2.65 dB from 1.5 GHz to 9.2 GHz. Four TZs and five RPs are observed in the frequency response. The lower and upper stopband band width (BW) of the measured Filter I are 1.2 GHz and 5.5 GHz of upper stopband BW with rejection level greater than 10 dB, respectively. Filter II (inward quad circle slots) operates from 1.4 GHz to 9.05 GHz with 1.65 dB maximum insertion loss inside the passband with four TZs and four RPs, which, in turn, enhances the filter characteristics in terms of selectivity, flatness and stopband. Moreover, 1 GHz BW of lower and upper stopbands are observed. Thus, the fabricated filters (Filters I and II) are therefore evaluated, and the outcomes show good agreement with the electromagnetic simulation response.

Research limitations/implications

The limitation of this work is the back radiation caused by DGS, which can be eradicated by placing the filter in the cavity and retaining its performance.

Practical implications

The proposed UWB BPFs with novel resonators find their role in the UWB range covering L, S, C and X bands for radars, GPS and satellite communication applications.

Originality/value

To the best of the authors’ knowledge, for the first time, the authors develop a compact UWB BPFs (Filters I and II) with BW greater than 7.5 GHz by combining reformed coupled lines and DGS resonators (CSRRs, V-shaped resonators [modified hairpin resonators], rectangular slots and quad circle slots [inwards and outwards]) for radars, GPS and satellite communication applications.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 23 March 2023

Amrita Sajja and S. Rooban

The purpose of chopper amplifier is to provide the wideband frequency to support biomedical signals.

Abstract

Purpose

The purpose of chopper amplifier is to provide the wideband frequency to support biomedical signals.

Design/methodology/approach

This paper proposes a chopper-stabilized amplifier with a cascoded operational transconductance amplifier. The high impedance loop is established using an MOS pseudo resistor and with a tunable MOS capacitor.

Findings

The total power consumption is 451 nW with a supplied voltage of 800 mV. The Gain and common mode rejection ratio are 48 dB and 78 dB, respectively.

Research limitations/implications

All kinds of real time data analysis was not carried out, only few test samples related to EEG signals are validated because the real time chip was not manufactured due to funding issues.

Practical implications

The proposed work was validated with Monte-Carlo simulations. There is no external funding for the proposed work. So there is no fabrication for the design. But post simulations are performed.

Originality/value

The high impedance loop is established using an MOS pseudo resistor and with a tunable MOS capacitor. To the best of the author’s knowledge, this concept is completely novel and there are no publications on this work. All the modules designed for chopper amplifier are new concepts.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 192