Search results

21 – 30 of over 5000
Article
Publication date: 1 June 2005

K. Hollaus, B. Wagner and O. Bíró

The aim of the present work is to find an efficient solution concerning the computational effort of quasi‐static electric field (QSEF) problems involving anisotropic conductivity

Abstract

Purpose

The aim of the present work is to find an efficient solution concerning the computational effort of quasi‐static electric field (QSEF) problems involving anisotropic conductivity and permittivity in the frequency domain.

Design/methodology/approach

Numerical simulations are carried out with tetrahedral nodal finite elements of first‐ and second‐order and with Withney elements. The solution of the boundary value problem with the aid of the electric scalar potential approximated by nodal finite elements is compared with those by the electric current vector potential represented by edge finite elements.

Findings

The simulation with an electric current vector potential approximated by the edge elements of first‐order prevail over that by the electric scalar potential approximated by nodal elements of second‐order concerning the memory requirements and the computation time at comparable accuracy.

Originality/value

The application of edge finite elements to solve QSEF problems considering an anisotropic complex conductivity in 3D.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 June 2022

Adwoa Boadua Yirenkyi-Fianko, Ernest Kwesi Yanful and Jemima Antwiwaa Ottou

Total organic carbon (TOC), dissolved organic carbon (DOC) and other physicochemical parameters of the Birim River, which serves for drinking and domestic purposes for rural…

Abstract

Purpose

Total organic carbon (TOC), dissolved organic carbon (DOC) and other physicochemical parameters of the Birim River, which serves for drinking and domestic purposes for rural mining communities, were analysed to assess the suitability of water quality for human consumption.

Design/methodology/approach

In total, 40 samples were collected from 20 sampling sites during the rainy season from July to September and the dry season from December to February in addition to two repeat samples and two blank samples. Samples were analysed for physiochemical parameters and the results were compared with World Health Organisation standards (WHO).

Findings

Data obtained for both rainy and dry seasons indicated TOC ranged from 1.1 to 7.3 mg/L and DOC 1–7.2 mg/L; pH, 5.6–8.63; temperature, 23.3–29.3°C; turbidity, <1.00–869NTU; apparent colour, <2.5–600 mg/L Pt-Co; true colour <2.5–150 mg/L Pt-Co; alkalinity, 27.8–80.4 mg/L; total suspended solids, <1.00–998 mg/L; electrical conductivity, 82–184 µS/cm; and bicarbonate, 33.9–98.1 mg/L. Particulate organic carbon (POC) was constituted between 1 and 10% of the TOC. Values for pH, turbidity, total suspended solids, and true colour indicated contamination of the river. p -value of <0.05 between seasons for the physicochemical parameters also suggests that the water is polluted.

Practical implications

Water from the Birim River is unsuitable for human consumption and may constitute a serious health risk to the consumers.

Originality/value

The paper yields immense value to inhabitant of communities using surface water affected by mining activities, policy makers in sustainability. It warns of the unsuitability of water from the Birim River for human consumption due to the potential health risk to consumers.

Details

Management of Environmental Quality: An International Journal, vol. 33 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 20 August 2018

Christoph Jörgens and Markus Clemens

In high voltage direct current (HVDC), power cables heat is generated inside the conductor and the insulation during operation. A higher amount of the generated heat in comparison…

Abstract

Purpose

In high voltage direct current (HVDC), power cables heat is generated inside the conductor and the insulation during operation. A higher amount of the generated heat in comparison to the dissipated one, results in a possible thermal breakdown. The accumulation of space charges inside the insulation results in an electric field that contributes to the geometric electric field, which comes from the applied voltage. The total electric field decreases in the vicinity of the conductor, while it increases near the sheath, causing a possible change of the breakdown voltage.

Design/methodology/approach

Here, the thermal breakdown is studied, also incorporating the presence of space charges. For a developed electro-thermal HVDC cable model, at different temperatures, the breakdown voltage is computed through numerical simulations.

Findings

The simulation results show a dependence of the breakdown voltage on the temperature at the location of the sheath. The results also show only limited influence of the space charges on the breakdown voltage.

Research limitations/implications

The study is restricted to one-dimensional problems, using radial symmetry of the cable, and does not include any aging or long-term effect of space charges. Such aging effect can locally increase the electric field, resulting in a reduced breakdown voltage.

Originality/value

A comparison of the breakdown voltage with and without space charges is novel. The chosen approach allows for the first time to assess the influence of space charges and field inversion on the thermal breakdown.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Richard D. Chippendale, Igor O. Golosnoy, Paul L. Lewin and Jan K. Sykulski

The purpose of this paper is to investigate and explain the unexpected current flow patterns and twisting equipotential surfaces observed in strongly anisotropic materials.

Abstract

Purpose

The purpose of this paper is to investigate and explain the unexpected current flow patterns and twisting equipotential surfaces observed in strongly anisotropic materials.

Design/methodology/approach

Potential distributions and current flow paths in highly anisotropic composite materials were studied via numerical simulation and experimentally. Simplified composite panels with two plyes were analysed using a finite‐element model; the predictions were then confirmed experimentally.

Findings

The unexpected twisting equipotential surfaces and current flow patterns were found to be consistent with minimising of Joule heat release in the material. Numerical modelling suggests that the twisted profiles of the potential are highly sensitive to the anisotropic electrical conductivity.

Originality/value

This paper discusses the reverse current flows witnessed in a two‐layer anisotropic system. Such behaviour has never been predicted or observed experimentally before. The reported results will be of interest to anyone who is considering using anisotropic materials such as carbon fibre composites which might experience applied potential difference, such as lightning strikes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 September 2008

P. Nithiarasu and R.W. Lewis

The purpose of this paper is to numerically model electro‐osmotic flow (EOF), Joule heating and heat transfer in a channel filled with an electrolyte and to introduce a consistent…

Abstract

Purpose

The purpose of this paper is to numerically model electro‐osmotic flow (EOF), Joule heating and heat transfer in a channel filled with an electrolyte and to introduce a consistent non‐dimensional scaling.

Design/methodology/approach

The finite element method along with a fractional step method is employed. Empirical relations for temperature dependent viscosity, electrical and thermal conductivities are also employed. Unstructured meshes are used in the numerical calculations.

Findings

The consistent scaling introduced in the present study is a better and easier way of modelling Joule heating effects in EOF.

Originality/value

The non‐dimensional scaling proposed is novel and consistent. The novelty is also introduced in the solution procedure as this is used for the first time to tackle EOF with Joule heating and conjugate heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2020

Pengyang Li, Qiang Chen, Qingyu Peng and Xiaodong He

This paper aims to study the synergistic effect of graphene sponge on the thermal properties and shape stability of composite phase change material (PCM).

Abstract

Purpose

This paper aims to study the synergistic effect of graphene sponge on the thermal properties and shape stability of composite phase change material (PCM).

Design/methodology/approach

Graphene oxide sponge is first prepared from an aqueous solution of graphene oxide by freeze-drying method. The oxidized graphene sponge is reduced by hydrazine hydrate. Finally, use vacuum impregnation method to introduce paraffin into graphene sponge to prepare composite PCM.

Findings

Graphene sponge is used to improve the shape stability of paraffin wax and improves the thermal conductivity and latent heat of the composite PCM. The thermal conductivity increases by 200 per cent and the composite PCM has excellent reliability in 100 melt-freezing cycles.

Research limitations/implications

A simple way for fabricating composite PCM with high thermal conductivity and latent heat which has the potential to be used as thermal storage materials without container encapsulation has been developed by using graphene sponge and paraffin.

Originality/value

The materials and preparation methods with special structure and properties in this paper provide a new idea for the research of PCM, which can be widely used in the fields of energy conversion and storage.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 1995

K. Gilleo

The electronics assembly industry has fortunately rediscovered conductive adhesives as the search for lead‐free joining materials and improved performance intensifies. Although…

Abstract

The electronics assembly industry has fortunately rediscovered conductive adhesives as the search for lead‐free joining materials and improved performance intensifies. Although these intrinsically clean bonding agents are often first sought for their favourable environmental attributes, many are surprised to find that conductive adhesives can solve old and new problems. Today, new polymer solders for SMT allow low temperature processing, finer pitch assembly and wider processing latitude while providing compatibility with a very much larger range of materials than solder. State‐of‐the‐art adhesives are oxide‐tolerant and absolutely no fluxing or cleaning is required. Adhesives work where solder cannot be used. What's more, polymer‐based solder alternatives can run on existing SMT lines — no new equipment is needed. Z‐axis, or anisotropic, bonding agents are uni‐directional conductive materials that solve fine pitch interconnect problems in several areas. The anisotropics now dominate the flat panel interconnect field. Nearly every LCD and other flat panel display is connected with a polymer adhesive. The Z‐axis adhesives are also beginning to enable high density multilayer circuits and MCMs to be built more effectively. Finally, Z‐axis appears to offer the simplest and most cost‐effective means for flip chip bonding. However, special equipment is required. The paper compares the metallurgical solder joint, the present de facto standard, with the polymer composite bond to highlight similarities and important differences. All types of conductive adhesives are discussed including the latest — Area Array Z‐axis types. Bonding materials, assembly processes and performance are also covered.

Details

Soldering & Surface Mount Technology, vol. 7 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 20 March 2023

Emad S. Shafik, Nehad N. Rozik, Nadia F. Youssef and Salwa L. Abd-El-Messieh

The purpose of this study is to utilize two types of gypsum mold wastes from two different factories as novel and economical reinforcing fillers for composites that may be useful…

Abstract

Purpose

The purpose of this study is to utilize two types of gypsum mold wastes from two different factories as novel and economical reinforcing fillers for composites that may be useful for building materials and floors. Two types of gypsum mold wastes from two different factories as raw materials were incorporated into linear low density polyethylene (LLDPE) aiming to get rid of that waste in one hand and obtaining useful economical composites suitable for building materials and floors.

Design/methodology/approach

Composites were prepared from two types of gypsum mold wastes substituted with different ratios from raw gypsum and LLDPE throughout the melt blending technique. The physico-mechanical and electrical investigations in addition to the morphology of the composites were included.

Findings

The mechanical results illustrate that substituting commercial gypsum with gypsum mold waste positively affects tensile strength, flexural strength and hardness shore D for the LLDPE composites. The tensile strength increased from 5 MPa for LLDPE filled with commercial gypsum as blank samples to 11.2 and 13.2 MPa for LLDPE filled with D and S waste. Also, electrical properties which include both permittivity ɛ′ and dielectric loss ɛ″ increased with increasing the waste content in the LLDPE matrix. In addition to the electrical conductivity values, σ lies in the order of insulation materials. Consequently, it is possible to produce materials with a gypsum matrix by adding industrial waste, improving the behavior of the traditional gypsum and enabling those composites to be applied in various construction applications as eco-friendly tiles.

Originality/value

This study aims to prepare eco-friendly composites based on LLDPE and waste gypsum mold to preserve resources for the coming generations, other than lowering the environmental footprint and saving the costs of getting rid of it.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 April 1999

110

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 November 2018

Mohammadhossein Hajiyan, Shohel Mahmud, Mohammad Biglarbegian, Hussein A. Abdullah and A. Chamkha

The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering…

Abstract

Purpose

The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering nonlinearity of magnetic field-dependent thermal conductivity.

Design/methodology/approach

The properties of the MNF (Fe3O4+kerosene) were described by polynomial functions of magnetic field-dependent thermal conductivity. The effect of the transverse magnetic field (0 < H < 105), Hartmann Number (0 < Ha < 60), Rayleigh number (10 <Ra <105) and the solid volume fraction (0 < φ < 4.7%) on the heat transfer performance inside the enclosed space was examined. Continuity, momentum and energy equations were solved using the finite element method.

Findings

The results show that the Nusselt number increases when the Rayleigh number increases. In contrast, the convective heat transfer rate decreases when the Hartmann number increases due to the strong magnetic field which suppresses the buoyancy force. Also, a significant improvement in the heat transfer rate is observed when the magnetic field is applied and φ = 4.7% (I = 11.90%, I = 16.73%, I = 10.07% and I = 12.70%).

Research limitations/implications

The present numerical study was carried out for a steady, laminar and two-dimensional flow inside the square enclosure. Also, properties of the MNF are assumed to be constant (except thermal conductivity) under magnetic field.

Practical implications

The results can be used in thermal storage and cooling of electronic devices such as lithium-ion batteries during charging and discharging processes.

Originality/value

The accuracy of results and heat transfer enhancement having magnetic field-field-dependent thermal conductivity are noticeable. The results can be used for different applications to improve the heat transfer rate and enhance the efficiency of a system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

21 – 30 of over 5000