Search results

1 – 10 of 966
Article
Publication date: 7 March 2016

Haibao Lu, Yongtao Yao, Jinying  Yin and Long Lin

This paper aims to study the synergistic effect of self-assembled carboxylic acid-functionalised carbon nanotube (CNT) and nafion/silica nanofibre nanopaper on the…

Abstract

Purpose

This paper aims to study the synergistic effect of self-assembled carboxylic acid-functionalised carbon nanotube (CNT) and nafion/silica nanofibre nanopaper on the electro-activated shape memory effect (SME) and shape recovery behaviour of shape memory polymer (SMP) nanocomposite.

Design/methodology/approach

Carboxylic acid-functionalised CNT and nafion/silica nanofibre are first self-assembled onto carbon fibre by means of deposition and electrospinning approaches, respectively, to form functionally graded nanopaper. The combination of carbon fibre and CNT is introduced to enable the actuation of the SME in SMP by means of Joule heating at a low electric voltage of 3.0-5.0 V.

Findings

Nafion/silica nanofibre is used to improve the shape recovery behaviour and performance of the SMP for enhanced heat transfer and electrical actuation effectiveness. Low electrical voltage actuation and high electrical actuation effectiveness of 32.5 per cent in SMP has been achieved.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using functionally graded CNT and nafion/silica nanofibre nanopaper.

Originality/value

The outcome of this study will help to fabricate the SMP composite with high electrical actuation effectiveness under low electrical voltage actuation.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 July 2019

Mariusz Żokowski, Krzysztof Falkowski, Paulina Kurnyta-Mazurek and Maciej Henzel

The paper presents the results of work on control systems of bearingless electric motors. Authors proposed the applications of bearingless electric machines for aircraft actuation…

Abstract

Purpose

The paper presents the results of work on control systems of bearingless electric motors. Authors proposed the applications of bearingless electric machines for aircraft actuation system. Suggested solution characterizes novel concept of on-board equipment design such as More Electric Aircraft. Magnetic suspension technology allows elimination of friction force and the negative performance features of classic bearing system. However, to achieve all these purposes appropriately, dedicated control system must be also applied.

Design/methodology/approach

The development of a control system of bearingless electric machine is presented in detail. Mathematical model and construction of induction bearingless motor are widely discussed. Then, proportional–integral-derivative controller algorithm designing for BEM control system was presented using the well pole placement method. Simulation model of BEM control system with use of Matlab-Simulink software was shown. Finally, experimental studies on laboratory stand were introduced. The paper presents design methodology of conventional and advanced control system of bearingless motor.

Findings

The presented concept of the bearingless electric machines could be applied in the on-board actuation system. During research, full control system of bearingless electric motor was designed and tested. This system consisted of two subsystems. The first responded for rotary speed stabilization and second one was designed for position control of the rotor in the air gap.

Practical implications

The presented concept of the bearingless electric machines could be applied in the on-board actuation system. During research, full control system of bearingless electric motor was designed and tested. This system consisted of two subsystems. The first responded for rotary speed stabilization and second one was designed for position control of the rotor in the air gap.

Originality/value

The idea of active magnetic suspension system will be implemented for aviation on technology readiness level V. The paper presents unique laboratory stand with bearingless electric motor and experimental studies. The stable time responses of designed control system were presented and discussed. In addition, preliminary considerations of advanced control system with robust controller were introduced as well.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 March 2019

Guangkai Sun, Yang Hu, Mingli Dong, Yanlin He, Mingxin Yu and Lianqing Zhu

Soft robotics is a burgeoning field owing to its high adaptability and safety in human–machine interaction and unstructured environments. However, the feedback control of soft…

Abstract

Purpose

Soft robotics is a burgeoning field owing to its high adaptability and safety in human–machine interaction and unstructured environments. However, the feedback control of soft actuators with flexible sensors is still a challenge.

Design/methodology/approach

To address this issue, this study proposes an optical fibre-based sensing membrane for the posture measurement of soft pneumatic bending actuators. The major contribution is the development of a flexible sensing membrane with a high sensitivity and repeatability for the feedback control of soft actuators. The characteristics of sensing membrane were analysed. The relationship between wavelength shift and bending curvature was derived. The curvatures of soft actuator were measured at four bending status, and the postures were reconstructed.

Findings

The results indicate that the measurement error is less than 2.1% of the actual bending curvature. The sensitivity is up to 212.8 pm/m−1, and the signal fluctuation in repeated measurements is negligible. This approach has broad application prospects in soft robotics, because it makes the optical fibre achieve more strength and compatible with soft actuators, thus improving the sensing accuracy, sensitivity and reliability of fibre sensors.

Originality/value

Different from previous approaches, an optical fibre with FBGs is embedded into a multilayered polyimide film to form a flexible sensing membrane, and the membrane is embedded into a soft pneumatic bending actuator as the smart strain limited layer which is able to measure the posture in real time. This approach makes the optical fibre stronger and compatible with the soft pneumatic bending actuator, and the sensing accuracy, sensitivity and reliability are improved. The proposed sensing configuration is effective for the feedback control of the soft pneumatic bending actuators.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 October 1997

P.G. Frankling

High speed cartoning offers a convenient way to pack a wide range of products. Sift‐proof sealing is a technique which can provide major savings in energy and raw materials, thus…

154

Abstract

High speed cartoning offers a convenient way to pack a wide range of products. Sift‐proof sealing is a technique which can provide major savings in energy and raw materials, thus reducing both cost and demands on resources. PVA has been the traditional adhesive used, but hot‐melt adhesives have a number of advantages, not least of which is speed. This is becoming increasingly important as packers demand greater production speeds and so hot‐melt adhesives are gradually supplanting PVA. Both elements of the process, adhesive and application equipment, will have to be skilfully engineered in order to cope with the added stresses placed on them by these high speeds. An exciting new development of the sift‐proof technique has recently been unveiled, whereby a treated paper membrane is bonded to the inside of the carton at each end. Not only does this provide a means of applying a complete “circuit” of hot melt to give a totally air‐tight pack but its barrier properties allow the carton to be used for perishable products. Further developments of the sift‐proof technique in the future can be expected.

Details

Pigment & Resin Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 April 2022

Hamdi Ercan and Mustafa Akın

In more than 100 years of aviation, significant progress has been made in flight control systems. The aircrafts that have entered service for the past ten years tend towards…

Abstract

Purpose

In more than 100 years of aviation, significant progress has been made in flight control systems. The aircrafts that have entered service for the past ten years tend towards power-by-wire flight control with electrical actuators. The purpose of this study is to analyse the effects of electrical actuation on power consumption, weight and fuel consumption on a commercial transport aircraft.

Design/methodology/approach

The Airbus A321-200 aircraft was chosen as a case study for analysing the effects of electrical actuation on the flight control actuation system (FCAS) architecture, and Pacelab SysArc software was used for design, modelling and analysis. As alternatives to the existing system, hybrid and all-electric models are built to a set of design guidelines with certain limitations.

Findings

Compared to the existing FCAS architecture model, 80 kg weight savings in the hybrid FCAS architecture model and 171 kg weight savings in the all-electric FCAS architecture model were observed. In terms of fuel consumption, it has been observed that there is 0.25% fuel savings in the hybrid FCAS architecture model, and 0.48% fuel savings in the all-electric FCAS architecture model compared to the existing FCAS architecture model at 3200 NM.

Practical implications

In line with the data obtained from this study, it is predicted that electrical actuation is more preferable in aircraft, considering its positive effects on weight and fuel consumption.

Originality/value

In this study, three different models were created: the existing FCAS architecture of a commercial transport aircraft, the hybrid FCAS architecture and the all-electric FCAS architecture. Hybrid and all-electric models are built according to a set of design guidelines, with certain limitations. Then, similar flight missions consisting of the same flight conditions are defined to analyse the effects of power consumption, weight, and fuel consumption comparatively.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 2014

Haibao Lu, Yongtao Yao and Long Lin

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon…

1633

Abstract

Purpose

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon fibre (CF) and grapheme, in shape-memory polymer (SMP) for electrical actuation.

Design/methodology/approach

Studies exploring carbon-based reinforcement in SMP composites for electrically conductive performance and Joule heating triggered shape recovery have been included, especially for the principle design, characterisation and shape recovery behaviour, making the article a comprehensive account of the systemic progress in SMP composite incorporating conductive carbon reinforcement.

Findings

SMPs are fascinating materials and have attracted great academic and industrial attention owing to their significant macroscopic shape deformation in the presence of an appropriate stimulus. The working mechanisms, the physico requirements and the theoretical origins of the different types of carbon-based reinforcement SMP composites have been discussed. Current research and development on the fabrication strategies of carbon-based reinforcement SMP composites have been summarised.

Research limitations/implications

A systematic review is to evaluate carbon-based reinforcements in SMPs for electrical actuation and discuss recent developments and future applications.

Practical implications

Carbon-based reinforcements in SMPs can be used as smart deployable space structure in the broad field of aerospace technologies.

Originality/value

To reveal the research and development of utilising CNT, CNF, CB, CF and grapheme to achieve shape recovery of SMP composites through electrically resistive heating, which will significantly benefit the research and development of smart materials and systems.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 May 2015

Haibao Lu, Yongtao Yao, Shipeng Zhu, Yunhua Yang and Long Lin

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their…

Abstract

Purpose

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their large dissimilarity in electrical/thermal conductive properties. The study attempted to develop an effective approach to fabricate free-standing carbon nanofibre (CNF) assembly in octagon shape formation. The structure design and thermal conductive performance of the resulting octagon-shaped CNF assembly were optimised and simulated.

Design/methodology/approach

The CNF nanopaper was prepared based on a filtration method. The SMP nanocomposites were fabricated by incorporating these CNF assemblies with epoxy-based SMP resin by a resin-transfer modelling technique. Thermal conductivity of the octagon-shaped CNF assembly was simulated using the ANSYS FLUENT software for structure design and optimisation. The effect of the octagon-shaped CNF on the thermomechanical properties and thermally responsive shape-memory effect of the resulting SMP nanocomposites were characterised and interpreted.

Findings

The CNF template incorporated with SMP to achieve Joule heating triggered shape recovery at a low electric voltage of 3-10 V, due to which the electrical resistivity of SMP nanocomposites was significantly improved and lowered to 0.20 O·cm by the CNF template. It was found that the octagon CNF template with 2 mm width of skeleton presented a highest thermally conductive performance to transfer resistive heat to the SMP matrix.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using an octagon CNF template. Low electrical voltage actuation in SMP has been achieved.

Originality/value

The fabricated CNF template, the structure design and analysis of dynamic thermomechanical properties of SMP are novel.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 November 2010

Siddiq M. Qidwai and V.G. DeGiorgi

The paper aims to highlight the computational implementation of a nonlinear piezoelectric constitutive model and its application in determining the impact of misalignment between…

Abstract

Purpose

The paper aims to highlight the computational implementation of a nonlinear piezoelectric constitutive model and its application in determining the impact of misalignment between initial poling direction and applied electrical field, and mechanical boundary conditions on actuator performance.

Design/methodology/approach

The numerical analysis is based on an existing three‐dimensional model, where the original rate‐independent evolution equations are replaced by their rate‐dependent counterparts to facilitate implementation, which is performed in a partial differential equation solver. The execution of the model is verified through several benchmark constitutive responses.

Findings

The analysis shows that small angles of poling and loading axes misalignment such as may occur in fabrication (less than 5) have minor impact on piezoelectric performance regardless of the type of imposed mechanical boundary conditions. On the other hand, larger angles of misalignment can have a significant impact, the feasibility of which in actuator design remains to be seen. Furthermore, it is shown that the linear response range of these actuators can be expanded by increased levels of mechanical constraint at the cost of maximum actuation stroke regardless of the degree of misalignment.

Originality/value

The misalignment, which occurs accidentally, but can also be introduced purposefully during the fabrication process when poled material is cut into specimen form, may exhibit desirable performance features for actuator design when combined with appropriate mechanical constraints.

Details

Engineering Computations, vol. 27 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 December 2022

Meby Mathew, Mervin Joe Thomas, M.G. Navaneeth, Shifa Sulaiman, A.N. Amudhan and A.P. Sudheer

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this…

Abstract

Purpose

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this field. The shortcomings and technological developments in sensing the input signals to enable the desired motions, actuation, control and training methods are explained for further improvements in exoskeleton research.

Design/methodology/approach

Search platforms such as Web of Science, IEEE, Scopus and PubMed were used to collect the literature. The total number of recent articles referred to in this review paper with relevant keywords is filtered to 143.

Findings

Exoskeletons are getting smarter often with the integration of various modern tools to enhance the effectiveness of rehabilitation. The recent applications of bio signal sensing for rehabilitation to perform user-desired actions promote the development of independent exoskeleton systems. The modern concepts of artificial intelligence and machine learning enable the implementation of brain–computer interfacing (BCI) and hybrid BCIs in exoskeletons. Likewise, novel actuation techniques are necessary to overcome the significant challenges seen in conventional exoskeletons, such as the high-power requirements, poor back drivability, bulkiness and low energy efficiency. Implementation of suitable controller algorithms facilitates the instantaneous correction of actuation signals for all joints to obtain the desired motion. Furthermore, applying the traditional rehabilitation training methods is monotonous and exhausting for the user and the trainer. The incorporation of games, virtual reality (VR) and augmented reality (AR) technologies in exoskeletons has made rehabilitation training far more effective in recent times. The combination of electroencephalogram and electromyography-based hybrid BCI is desirable for signal sensing and controlling the exoskeletons based on user intentions. The challenges faced with actuation can be resolved by developing advanced power sources with minimal size and weight, easy portability, lower cost and good energy storage capacity. Implementation of novel smart materials enables a colossal scope for actuation in future exoskeleton developments. Improved versions of sliding mode control reported in the literature are suitable for robust control of nonlinear exoskeleton models. Optimizing the controller parameters with the help of evolutionary algorithms is also an effective method for exoskeleton control. The experiments using VR/AR and games for rehabilitation training yielded promising results as the performance of patients improved substantially.

Research limitations/implications

Robotic exoskeleton-based rehabilitation will help to reduce the fatigue of physiotherapists. Repeated and intention-based exercise will improve the recovery of the affected part at a faster pace. Improved rehabilitation training methods like VR/AR-based technologies help in motivating the subject.

Originality/value

The paper describes the recent methods for signal sensing, actuation, control and rehabilitation training approaches used in developing exoskeletons. All these areas are key elements in an exoskeleton where the review papers are published very limitedly. Therefore, this paper will stand as a guide for the researchers working in this domain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 February 2005

4585

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 966