Search results

1 – 10 of over 1000
Article
Publication date: 26 December 2023

Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi and Songyi Wang

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental…

Abstract

Purpose

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.

Design/methodology/approach

This study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.

Findings

The result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.

Research limitations/implications

The optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.

Originality/value

In prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.

Details

Industrial Management & Data Systems, vol. 124 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Book part
Publication date: 13 December 2023

Divya Singh and Ujjwal Kanti Paul

Despite efforts to reduce environmental pollution and wasteful fossil fuel use, electric vehicles (EVs) are still rare on the road. Why is it so challenging to get widespread EV…

Abstract

Despite efforts to reduce environmental pollution and wasteful fossil fuel use, electric vehicles (EVs) are still rare on the road. Why is it so challenging to get widespread EV adoption? One significant factor on which it heavily depends is one's awareness and understanding of EVs. However, due to an absolute lack of knowledge on the part of the populace, this factor becomes a huge impediment to the uptake of EVs. A systematic review of the electronic database Scopus for the years 2003–2022 was carried out on ‘EV awareness and adoption of EV’ while considering the ‘Preferred Reporting Items for Systematic Reviews and Meta-analysis’ (PRISMA) standards. A three-step identification process resulted in the ultimate detection of 41 papers, which were then thoroughly examined. A conceptual framework that encompasses the three key awareness aspects that influence EV adoption is developed. To encourage greater uniformity among EV researchers, this study's conclusions serve as a foundation for operationalising upcoming research efforts within a predetermined framework. The authors must therefore be optimistic that lingering technological, legislative, cultural, behavioural and business-model barriers may be overcome over time through widespread dissemination of knowledge and awareness related to EVs, making it possible for everyone to switch to greener, more economical and more efficient transportation solutions.

Details

Fostering Sustainable Development in the Age of Technologies
Type: Book
ISBN: 978-1-83753-060-1

Keywords

Case study
Publication date: 27 February 2024

Digbijay Nayak and Arunaditya Sahay

The case study has been prepared for management students/business executives to understand electric vehicle (EV) business, business environment, industry competition and strategic…

Abstract

Learning outcomes

The case study has been prepared for management students/business executives to understand electric vehicle (EV) business, business environment, industry competition and strategic planning and strategy implementation.

Case overview/synopsis

The size of the Indian passenger vehicle market was valued at US$32.70bn in 2021; it was projected to touch US$54.84bn by 2027 with a Compound Annual Growth Rate (CAGR) of more than 9% during the period 2022–2027. The passenger vehicle industry, a part of the overall automotive industry, was expected to grow at a rapid pace, as the Indian economy was rising at the fastest rate. However, the Government of India (GoI) had put a condition on the growth scenario by mandating that 100% of vehicles produced would be EVs by 2030. Tata Motors (TaMo), a domestic player in the market, had been facing a challenging competitive environment. Although it had been incurring losses, it had successfully ventured into the EV business. TaMo had taken advantage of the first mover by creating an electric mobility business vertical to enable the company to deliver on its aspiration of providing innovative and competitive e-mobility solutions. TaMo leadership had been putting efforts to scale up the electric mobility business, thus, contributing to GoI’s plan for electric mobility. Shailesh Chandra, president of electric mobility business, had a big task in hand. He had to scale up EV production and sales despite insufficient infrastructure for charging and shortages of electronic components for manufacturing.

Complexity academic level

The case study has been prepared for management students/business executives for strategic management class. It is recommended that the case study is distributed in advance so that the students can prepare well in advance for classroom discussions. Groups will be created to delve into details for a specific question. While one group will make their presentation, the other groups will question the solution provided and give suggestions.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 11: Strategy.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 11 May 2023

Farbod Zahedi, Hamidreza Kia and Mohammad Khalilzadeh

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized…

Abstract

Purpose

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized the importance of green logistic system design in decreasing environmental pollution and achieving sustainable development.

Design/methodology/approach

In this paper, a bi-objective mathematical model is developed for the capacitated electric VRP with time windows and partial recharge. The first objective deals with minimizing the route to reduce the costs related to vehicles, while the second objective minimizes the delay of arrival vehicles to depots based on the soft time window. A hybrid metaheuristic algorithm including non-dominated sorting genetic algorithm (NSGA-II) and teaching-learning-based optimization (TLBO), called NSGA-II-TLBO, is proposed for solving this problem. The Taguchi method is used to adjust the parameters of algorithms. Several numerical instances in different sizes are solved and the performance of the proposed algorithm is compared to NSGA-II and multi-objective simulated annealing (MOSA) as two well-known algorithms based on the five indexes including time, mean ideal distance (MID), diversity, spacing and the Rate of Achievement to two objectives Simultaneously (RAS).

Findings

The results demonstrate that the hybrid algorithm outperforms terms of spacing and RAS indexes with p-value <0.04. However, MOSA and NSGA-II algorithms have better performance in terms of central processing unit (CPU) time index. In addition, there is no meaningful difference between the algorithms in terms of MID and diversity indexes. Finally, the impacts of changing the parameters of the model on the results are investigated by performing sensitivity analysis.

Originality/value

In this research, an environment-friendly transportation system is addressed by presenting a bi-objective mathematical model for the routing problem of an electric capacitated vehicle considering the time windows with the possibility of recharging.

Open Access
Article
Publication date: 21 March 2024

Niklas Arvidsson, Howard Twaddell Weir IV and Tale Orving

To assess the introduction and performance of light electric freight vehicles (LEFVs), more specifically cargo cycles in major 3PL organizations in at least two Nordic countries.

151

Abstract

Purpose

To assess the introduction and performance of light electric freight vehicles (LEFVs), more specifically cargo cycles in major 3PL organizations in at least two Nordic countries.

Design/methodology/approach

Case studies. Interviews. Company data on performance before as well as after the introduction. Study of differing business models as well as operational setups.

Findings

The results from the studied cases show that LEFVs can compete with conventional vans in last mile delivery operations of e-commerce parcels. We account for when this might be the case, during which circumstances and why.

Research limitations/implications

Inherent limitations of the case study approach, specifically on generalization. Future research to include more public–private partnership and multi-actor approach for scalability.

Practical implications

Adding to knowledge on the public sector facilitation necessary to succeed with implementation and identifying cases in which LEFVs might offer efficiency gains over more traditional delivery vehicles.

Originality/value

One novelty is the access to detailed data from before the implementation of new vehicles and the data after the implementation. A fair comparison is made possible by the operational structure, area of delivery, number of customers, customer density, type of packages, and to some extent, the number of packages being quite similar. Additionally, we provide data showing how city hubs can allow cargo cycles to work synergistically with delivery vans. This is valuable information for organizations thinking of trying LEFVs in operations as well as municipalities/local authorities that are interested.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 20 September 2022

Lalit Narendra Patil, Hrishikesh P. Khairnar and S.G. Bhirud

Electric vehicles are well known for a silent and smooth drive; however, their presence on the road is difficult to identify for road users who may be subjected to certain…

Abstract

Purpose

Electric vehicles are well known for a silent and smooth drive; however, their presence on the road is difficult to identify for road users who may be subjected to certain incidences. Although electric vehicles are free from exhaust emission gases, the wear particles coming out from disc brakes are still unresolved issues. Therefore, the purpose of the present paper is to introduce a smart eco-friendly braking system that uses signal processing and integrated technologies to eventually build a comprehensive driver assistance system.

Design/methodology/approach

The parameters obstacle identification, driver drowsiness, driver alcohol situation and heart rate were all taken into account. A contactless brake blending system has been designed while upgrading a rapid response. The implemented state flow rule-based decision strategy validated with the outcomes of a novel experimental setup.

Findings

The drowsiness state of drivers was successfully identified for the proposed control map and set up vindicated with the improvement in stopping time, atmospheric environment and increase in vehicle active safety regime.

Originality/value

The present study adopted a unique approach and obtained a brake blending system for improved braking performance as well as overall safety enhancement with rapid control of the vehicle.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 June 2022

Hua Ke and Xingyue Chen

In this paper, the authors aim to consider the manufacturer's battery research and development (R&D) decision under subsidy. The supply chain includes two manufacturers, which…

Abstract

Purpose

In this paper, the authors aim to consider the manufacturer's battery research and development (R&D) decision under subsidy. The supply chain includes two manufacturers, which produce substitutable electric vehicles, and a battery supplier. One of the manufacturers can choose to develop batteries or buy batteries. The authors assume consumers do not have enough trust in the manufacturer-made battery.

Design/methodology/approach

Stackelberg game is made use of to study the battery R&D strategy of the manufacturer under the incentive of government subsidies. This paper makes a comparative analysis on six situations, then the authors get some conclusions and give some managerial insights.

Findings

The results show that subsidy strategies do not necessarily reduce actual payments when the manufacturer does not research and develop batteries. The retail prices and actual payments are closely related to the substitutability and total cost advantage of product. The authors also find consumer trust positively affects the demand of the electric vehicles using the manufacturer-made batteries and then affects the manufacturer's battery R&D decision. When consumers have low trust in manufacturer-made battery, subsidy can bring greater sales and make R&D more profitable than procurement, so that the manufacturer chooses R&D. This study's findings also suggest consumer subsidy is always better for the government.

Originality/value

Distinguished from previous studies, the authors discuss the decision-making of component research, and introduce various government subsidy strategies and consumer trust to study their roles in the manufacturer's battery R&D choice.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 April 2024

Amrutha Shetty and M. Rizwana

The global automobile industry is striving towards a sustainable future. Emerging countries including India are gearing up for the revolution. Considering the key role of customer…

Abstract

Purpose

The global automobile industry is striving towards a sustainable future. Emerging countries including India are gearing up for the revolution. Considering the key role of customer acceptance in the success of any technological shift, the study endeavors to ascertain the catalysts accelerating the adoption of Electric Two-Wheelers (E2W) in India by leveraging an extended Unified Theory of Acceptance and Use of Technology-2 model. The same would assist Electric Vehicle (EV) stakeholders in directing their efforts toward pivotal aspects having the potential to significantly bolster E2W penetration.

Design/methodology/approach

Data was collected using convenience sampling technique from 1,254 electric two-wheeler owners across four Indian states and analyzed using Structural Equation Modelling.

Findings

Performance Expectancy, Price Value and Hedonic Motivation have a significant influence on purchase intention leading to actual buying behavior. Effort Expectancy, Social Influence, habit value and facilitating conditions were insignificant. Pro-Environmental Approach and Government Support significantly impact adoption intention and behavior respectively in addition to model predictors thus supporting the study’s novelty. Purchase intention proved to influence Actual Buying Behavior. Synergized efforts of EV stakeholders towards performance innovation, cost-effectiveness, improved infrastructure and information diffusion on sustainability and user-friendliness could aid in achieving transition to green mobility.

Originality/value

The study predominantly intends to address the intention–behavior gap related to electric two-wheelers in India. Also, two additional constructs, government support and pro-environmental approach, were incorporated resulting in a novel research framework that aims to test their nuanced ability to impact the model predictors.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 7 November 2022

Rajamohana Kuselan and Venkatesan Sundharajan

This study aims to extend the driving range by on-board charging with use of photovoltaic (PV) source, avoiding the dependency on the grid supply and energy storage system in…

Abstract

Purpose

This study aims to extend the driving range by on-board charging with use of photovoltaic (PV) source, avoiding the dependency on the grid supply and energy storage system in addition to that reduce the conversion complexity influenced on converter section of electric vehicle (EV) system.

Design/methodology/approach

This paper proposed a PV fed integrated converter topology called integrated single-input multi-output (I-SIMO) converter with enriched error tolerant fuzzy logic controller (EET-FLC) based control technique to regulate the speed of brushless direct current motor drive. I-SIMO converter provides both direct current (DC) and alternating current (AC) outputs from a single DC input source depending on the operation mode. It comprises two modes of operation, act as DC–DC converter in vehicle standby mode and DC–AC converter in vehicles driving mode.

Findings

The use of PV panels in the vehicle helps to reduce dependence of grid supply as well as vehicle’s batteries. The proposed topology has to remove the multiple power conversion stages in EV system, reduce components count and provide dual outputs for enhancement of performance of EV system.

Originality/value

The proposed topology leads to reduction of switching losses and stresses across the components of the converter and provides reduction in system complexity and overall expenditure. So, it enhances the converter reliability and also improves the efficiency. The converter provides ripple-free output voltage under dynamic load condition. The performance of EET-FLC is studied by taking various performance measures such as rise time, peak time, settling time and peak overshoot and compared with conventional control designs.

Open Access
Article
Publication date: 14 November 2023

Leiting Zhao, Kan Liu, Donghui Liu and Zheming Jin

This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking…

Abstract

Purpose

This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor (BR) onboard the vehicle, which overcomes the vulnerability of having conventional temperature sensor.

Design/methodology/approach

In this study, the energy model based sensorless estimation method is developed. By analyzing the structure and the convection dissipation process of the BR onboard the vehicle, the energy-based operational temperature model of the BR and its cooling domain is established. By adopting Newton's law of cooling and the law of conservation of energy, the energy and temperature dynamic of the BR can be stated. To minimize the use of all kinds of sensors (including both thermal and electrical), a novel regenerative braking power calculation method is proposed, which involves only the voltage of DC traction network and the duty cycle of the chopping circuit; both of them are available for the traction control unit (TCU) of the vehicle. By utilizing a real-time iterative calculation and updating the parameter of the energy model, the operational temperature of the BR can be obtained and monitored in a sensorless manner.

Findings

In this study, a sensorless estimation/monitoring method of the operational temperature of BR is proposed. The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR, instead of adding dedicated thermal sensors. The results also validate the effectiveness of the proposal is acceptable for the engineering practical.

Originality/value

The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks. The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.

1 – 10 of over 1000