Search results

1 – 10 of over 2000
Article
Publication date: 31 July 2019

Wei Jiang, Yu Yan, An Zhang, Lianqing Yu, Gan Zuo, Hong Jun Li and Wei Chen

The purpose of this paper is to improve the operation and maintenance intelligence of power systems, and summarize the transmission line robots and their key technologies…

Abstract

Purpose

The purpose of this paper is to improve the operation and maintenance intelligence of power systems, and summarize the transmission line robots and their key technologies. High-voltage power cables are important channels for power transmission systems. Their special geographical environment and harsh natural environment can lead to many different faults. At present, such special operations in dangerous and harsh environments are performed manually, which have not only high labor intensity and low work efficiency but also great personal safety risks.

Design/methodology/approach

For maintenance works that are far away from the tower, power outages are required. With the increasing evaluation of transmission quality and operational safety, and the urgent need for automation and operation of modern power systems, the contradiction between this manual operation and modern high-quality power transmission has become increasingly prominent. An effective method to replace the manual maintenance work is to use the mobile robot to carry the operation manipulator and its end tool, that is, the live maintenance robot.

Findings

Some achievements have been made in the key technologies of live maintenance robots, the work to be done to meet the basic requirements of complex and changeable line environment and practical application. Based on the existing research results of live overhaul robot, the follow-up research will focus on the practical application needs and the frontier of scientific and technological development, and truly realize the human–machine integration between live overhaul robot–human working environment. Only in this way can the robot better serve the operation and maintenance of the power system.

Originality/value

This paper reviews the system platform, operation function, structural characteristics and key technologies involved in the power cable robot, and the combination of live maintenance robots and modern high-tech such as big data and cloud computing is also given, and finally, the future development direction of the special operation robot is pointed out.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 February 2020

Hong Jun Li, Wei Jiang, Dehua Zou, Yu Yan, An Zhang and Wei Chen

In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability…

Abstract

Purpose

In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability control performance of the robot manipulator when conduct electric power operation, and effectively reduce the influence of disturbance factors on the robot motion control, this paper aims to presents a robust trajectory tracking motion control method for power cable robot manipulators based on sliding mode variable structure control theory.

Design/methodology/approach

Through the layering of aerial-online-ground robot three-dimensional control architecture, the robot joint motion dynamic model has been built, and the motion control model of the N-degrees of freedom robot system has also been obtained. On this basis, the state space expression of joint motion control under disturbance and uncertainty has been also derived, and the manipulator sliding mode variable structure trajectory tracking control model has also been established. The influence of the perturbation control parameters on the robot motion control can be compensated by the back propagation neural network learning, the stability of the controller has been analyzed by using Lyapunov theory.

Findings

The robot has been tested on a analog line in the lab, the effectiveness of sliding mode variable structure control is verified by trajectory tracking simulation experiments of different typical signals with different methods. The field operation experiment further verifies the engineering practicability of the control method. At the same time, the control method has the remarkable characteristics of sound versatility, strong adaptability and easy expansion.

Originality/value

Three-dimensional control architecture of underground-online-aerial robots has been proposed for industrial field applications in the ubiquitous power internet of things environment (UPIOT). Starting from the robot joint motion, the dynamic equation of the robot joint motion and the state space expression of the robot control system have been established. Based on this, a robot closed-loop trajectory tracking control system has been designed. A robust trajectory tracking motion control method for robots based on sliding mode variable structure theory has been proposed, and a sliding mode control model for the robot has been constructed. The uncertain parameters in the control model have been compensated by the neural network in real-time, and the sliding mode robust control law of the robot manipulator has been solved and obtained. A suitable Lyapunov function has been selected to prove the stability of the system. This method enhances the expansibility of the robot control system and shortens the development cycle of the controller. The trajectory tracking simulation experiment of the robot manipulator proves that the sliding mode variable structure control can effectively restrain the influence of disturbance and uncertainty on the robot motion stability, and meet the design requirements of the control system with fast response, high tracking accuracy and sound stability. Finally, the engineering practicability and superiority of sliding mode variable structure control have been further verified by field operation experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 September 2020

Wei Jiang, Dehua Zou, Xiao Zhou, Gan Zuo, Gao Cheng Ye and Hong Jun Li

The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot

Abstract

Purpose

The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot is an important equipment to ensure the reliable operation of high voltage lines and is a useful exploration to realize high-quality power transmission. As the robot system platform equipment mature and operation environment gradually become more complex, the double arm coordination motion control in extreme environment becomes one of the main bottleneck for its practical in power system.

Design/methodology/approach

This paper summarizes the key technologies related to power cable robots, and aims at key technical indicators such as operation reliability, operation efficiency and operation quality in the robot’s practical process. The dynamic evolution mechanism of the robot’s mechanical configuration, the multi-physics information fusion algorithm in extreme environments, the robot’s autonomous positioning and its error compensation control, the robot’s robust motion control in extreme environments and the dual-arm force-position hybrid coordination control and the dynamic distribution and elimination mechanism of internal forces in the closed chain between robots and operating objects, all the research methods and solutions of the key technologies are proposed, respectively.

Findings

Finally, a new control architecture for power cable robots in the background of the Ubiquitous Power Internet of Things is proposed so as to manage the operation and maintenance of electric power systems. The above key technologies are a new exploration of the operation and maintenance management of EHV (Extra High Voltage) multi-split transmission lines which have laid a solid theoretical foundation for the power cable robot.

Originality/value

High voltage transmission line is the main channel of power transmission. It is an important means to improve the integration of operation and maintenance management of power system to use robot instead of manual inspection and maintenance of power line, in the promotion and application of electric robot. The authors pay attention to the practicability, and the breakthrough of key technologies of robot is the premise of the practicability of robot. In this paper, the robot operation and control in multi-task and complex scenes are studied. The research and implementation of the main key technologies, such as the dynamic evolution mechanism of robot configuration, the coupling and fusion law of multi physical fields in the extreme electric power environment, the autonomous positioning control of manipulator, the robust control of robot in the super electromagnetic field environment and the cooperative operation control of multi manipulator, are discussed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 July 2019

Wei Jiang, Meng Huai Peng, Yu Yan, Gongping Wu, An Zhang, Lianqing Yu and Hong Jun Li

In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is…

Abstract

Purpose

In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is strongly affected by the extreme environment. Therefore, this study aims to improve the manipulator motion control performance of power cable maintenance robot and effectively reduce the influence of specific operation environment on the robot manipulator motion posture.

Design/methodology/approach

The mathematical model under three typical operation conditions, namely, flexible line, wind load and strong electromagnetic field have been established, correspondingly the mapping relationship between different environment parameters and robot operation conditions are also given. Based on the nonlinear approximation feature of neural network, a back propagation (BP) neural network is adopted to solve the posture control problems. The power cable line sag, robot tile angle caused by wind load and spatial field strength are the input signals of the BP network in the robot motion posture control method.

Findings

Through the training and learning of the BP network, the output control variables are used to compensate the actual robot operation posture. The simulation experiment verifies the effectiveness of the proposed algorithm, and compared with the conventional proportional integral differential (PID) control, the method has high real-time performance and sound stability. Finally, field operation experiments further validate the engineering feasibility of the control method, and at the same time, the proposed control method has the remarkable characteristics of sound universality, adaptability and easy expansion.

Originality/value

A multi-layer control architecture which is suitable for smart grid platform maintenance is proposed and a robot system platform for network operation and maintenance management is constructed. The human–machine–environment coordination and integration mode and intelligent power system management platform can be realized which greatly improves the intelligence of power system management. Mathematical models of the robot under three typical operation conditions of flexible wire wind load and strong electromagnetic field are established and the mapping relationship between different environmental parameters and the robot operation conditions is given. Through the non-linear approximation characteristics of BP network, the control variables of the robot joints can be obtained and the influence of extreme environment on the robot posture can be compensated. The simulation results of MATLAB show that the control algorithm can effectively restrain the influence of uncertain factors such as flexible environment, wind load and strong electromagnetic field on the robot posture. It satisfied the design requirements of fast response, high tracking accuracy and good stability of the control system. Field operation tests further verify the engineering practicability of the algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 April 2020

Yu Yan, Wei Jiang, Dehua Zou, Wusheng Quan, Hong Jun Li, YunFei Lei and Zhan fan Zhou

In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural…

Abstract

Purpose

In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural environment on the power system, which will lead to the occurrence of different faults in the distribution network and directly affect the normal operation of the power grid.

Design/methodology/approach

The purpose of this study is to solve the problems of labor intensity, high risk and low efficiency of distribution network manual maintenance operation, this paper proposed a new configuration of the live working robot for distribution network maintenance, the robot is equipped with dual working arms through the mobile platform, which can realize the coordination movement, the autonomous reorganization and replacement of the end tools, respectively, so as the robot power distribution maintenance function such as stripping, trimming, wiring and the operation control problem of the distribution network-robot with small arms and in small operation space can be realized.

Findings

To effective elimination or reduce the adverse effects of the internal forces in the closed chain between the working object and manipulator under the typical task of the 10 kV distribution network, this paper has established the robot coordinated control dynamics model in the closed-chain between the dual-working object and proposed the dynamic distribution method of closed-chain internal force and the effectiveness has been proved by simulation experiments and 10 kV field operation.

Originality/value

The force-position hybrid control can realize the mutual compensation of force and position so as to effectively reduce the internal force in the closed chain. Finally, the engineering practicality of the method is verified by field operation experiment, the effective implementation of this control method greatly improves the robot working efficiency and the operation reliability, the promotion and application of the control method have great theoretical and practical value and maintenance management system, so as to achieve automation of electric.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2019

Yu Yan, Wei Jiang, An Zhang, Qiao Min Li, Hong Jun Li, Wei Chen and YunFei Lei

This study aims to the three major problems of low cleaning efficiency, high labor intensity and difficult to evaluate the cleaning effect for manual insulators cleaning in ultra…

Abstract

Purpose

This study aims to the three major problems of low cleaning efficiency, high labor intensity and difficult to evaluate the cleaning effect for manual insulators cleaning in ultra high voltage (UHV) converter station, the purpose of this paper is to propose a basic configuration of UHV vertical insulator cleaning robot with multi-freedom-degree mechanical arm system on mobile airborne platform and its innovation cleaning operation motion planning.

Design/methodology/approach

The main factors affecting the insulators cleaning effect in the operation process have been analyzed. Because of the complex coupling relationship between the influencing factors and the insulators cleaning effect, it is difficult to establish its analytical mathematical model. Combining the non-linear mapping and approximation characteristics of back propagation (BP) neural network, the insulator cleaning effect evaluation can be abstracted as a non-linear approximation process from actual cleaning effect to ideal cleaning effect. An evaluation method of robot insulator cleaning effect based on BP neural network has been proposed.

Findings

Through the BP neural network training, the robot cleaning control parameters can be obtained and used in the robot online operation control, so that the better cleaning effect can be also obtained. Finally, a physical prototype of UHV vertical insulator cleaning robot has been developed, and the effectiveness and engineering practicability of the proposed robot configuration, cleaning effect evaluation method are all verified by simulation experiments and field operation experiments. At the same time, this method has the remarkable characteristics of sound versatility, strong adaptability, easy expansion and popularization.

Originality/value

An UHV vertical insulator cleaning robot operation system platform with multi-arm system on airborne platform has been proposed. Through the coordinated movement of the manipulator each joint, the manipulator can be positioned to the insulator strings, and the insulator can be cleaned by two pairs high-pressure nozzles located at the double manipulator. The influence factors of robot insulator cleaning effect have been analyzed. The BP neural network model of insulator cleaning effect evaluation has been established. The evaluation method of robot insulator cleaning effect based on BP neural network has also been proposed, and the corresponding evaluation result can be obtained through the network training. Through the system integration design, the robot physical prototype has been developed. For the evaluation of other operation effects of power system, the validity and engineering practicability of the robot mechanism, motion planning and the method for evaluating the effect of robot insulator cleaning have been verified by simulation and field operation experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 February 2024

Yanghong Li, Yahao Wang, Yutao Chen, X.W. Rong, Yuliang Zhao, Shaolei Wu and Erbao Dong

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high…

Abstract

Purpose

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high load-carrying capacity and dexterity of the robot; on the other hand, the fully autonomous mode is uncontrollable and the teleoperation mode has a high failure rate. Therefore, this study aims to design a distribution network operation robot named Sky-Worker to solve the above two problems.

Design/methodology/approach

The heterogeneous arms of Sky-Worker are driven by hydraulics and electric motors to solve the contradiction between high load-carrying capacity and high flexibility. A human–robot collaborative shared control architecture is built to realize real-time human intervention during autonomous operation, and control weights are dynamically assigned based on energy optimization.

Findings

Simulations and tests show that Sky-Worker has good dexterity while having a high load capacity. Based on Sky-Worker, multiuser tests and practical application experiments show that the designed shared-control mode effectively improves the success rate and efficiency of operations compared with other current operation modes.

Practical implications

The designed heterogeneous dual-arm distribution robot aims to better serve distribution line operation tasks.

Originality/value

For the first time, the integration of hydraulic and motor drives into a distribution network operation robot has achieved better overall performance. A human–robot cooperative shared control framework is proposed for remote live-line working robots, which provides better operation results than other current operation modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2000

George K. Chako

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in…

7257

Abstract

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in their efforts to develop and market new products. Looks at the issues from different strategic levels such as corporate, international, military and economic. Presents 31 case studies, including the success of Japan in microchips to the failure of Xerox to sell its invention of the Alto personal computer 3 years before Apple: from the success in DNA and Superconductor research to the success of Sunbeam in inventing and marketing food processors: and from the daring invention and production of atomic energy for survival to the successes of sewing machine inventor Howe in co‐operating on patents to compete in markets. Includes 306 questions and answers in order to qualify concepts introduced.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 12 no. 2/3
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 2 December 2022

Lijun Dong, Naichao Chen, Jiawen Liang, Tingting Li, Zhanlin Yan and Bing Zhang

The purpose of this study is to provide an in-depth understanding about the indoor-orbital electrical inspection robot, which is useful for motivating the further investigation on…

Abstract

Purpose

The purpose of this study is to provide an in-depth understanding about the indoor-orbital electrical inspection robot, which is useful for motivating the further investigation on the inspection of electrical equipment. Currently, electric energy has a strong correlation with the economic development of the country. Intelligent substations play an important role in the transmission and distribution of the electricity; the maintenance of the substation has attracted intensive attention due to the requirement of reliability and safety. The indoor-orbital electrical inspection robot has increasingly become the main tool to realize the unmanned. Hence, a systematic review is conducted systematically reviewing the current technical status of the indoor-orbital electrical inspection robot and discuss the existed problems.

Design/methodology/approach

In this paper, the most essential achievements in the field of indoor-orbital electrical inspection robots were reported to present the current status, and the mechanical structures and key inspective technologies were also discussed.

Findings

Four recommendations are provided from the analyzed review, which have made constructive comments on the overall structural design, functionality, intelligence and future development direction of the indoor-orbital electrical inspection robot, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first systematic review study on indoor-orbital electrical inspection robots; it fills the theoretical gap and proffers design ideas and directions for the development of the indoor-orbital electrical inspection robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 October 2000

Yoshinaga Maruyama

Since 1984, Kyushu Electric Power Company (KYUDEN) has made all‐out efforts to introduce outage‐free maintenance techniques. Robotic techniques are promoted as part of these…

Abstract

Since 1984, Kyushu Electric Power Company (KYUDEN) has made all‐out efforts to introduce outage‐free maintenance techniques. Robotic techniques are promoted as part of these efforts. Although the final objective is to develop a fully‐automatic hot‐line work robot, there are three steps in the technological development. The first step was the development of the bucket operation type manipulator Phase I, which was completed in 1989. Phase II, the second step in KYUDEN’s robot development, is one of semi‐automatic operation, with the operator assisting via remote control from a cabin on the ground. Tasks are conducted automatically, with the operator providing judgement and commands for each unit‐task. Development of Phase II was completed in December 1997. A field test of 17 Phase II units started at the end of 1999 following testing and operation training. This paper will present an outline of this robot system.

Details

Industrial Robot: An International Journal, vol. 27 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 2000