Search results

1 – 10 of over 3000
Article
Publication date: 19 August 2013

Majid A. Dehkordi, Seiichiro Yonekura and SeyedHadi Kohnepushi

The aim of this study is to identify and describe the factors associated with Nissan Company's electric vehicle (EV) development. In addition, Nissan's different commercialization…

5057

Abstract

Purpose

The aim of this study is to identify and describe the factors associated with Nissan Company's electric vehicle (EV) development. In addition, Nissan's different commercialization strategies toward EV and HEV development will be discussed.

Design/methodology/approach

This study uses a descriptive case study approach to provide a deep understanding of successful or failed projects of Nissan. In this term, the company's green car development between 1996 and 2012 will be analyzed. Based on the market presence, Nissan's electric vehicle production trend is divided into two different generations with different characteristics. The gap between these two generations has a structural effect on the current state of Nissan's EV development.

Findings

One key factor behind Nissan's success and lead in the current electric vehicle market is the long-term experience with specific type of market structure, which has nurtured the company with a strong green vehicle development capability. The study shows that the electric vehicles market gap acted as a catalyst for later Nissan's successful cases. Also, the authors demonstrate how the dramatic shifts in Nissan strategies helped the company to revitalize its leadership as an electric car guru.

Originality/value

This study provides a better insight into the importance of early stage commercialization strategies in the re-born market of eco-friendly vehicles.

Details

Journal of Product & Brand Management, vol. 22 no. 5/6
Type: Research Article
ISSN: 1061-0421

Keywords

Article
Publication date: 13 November 2017

Anna Corinna Cagliano, Antonio Carlin, Giulio Mangano and Carlo Rafele

The purpose of this paper is to investigate the diffusion dynamics of electric and hybrid commercial vans and its enabling factors in the city logistics (CL) contexts. The case of…

1287

Abstract

Purpose

The purpose of this paper is to investigate the diffusion dynamics of electric and hybrid commercial vans and its enabling factors in the city logistics (CL) contexts. The case of parcel delivery in Torino, Italy, is considered. Attention is paid to the influence on the choice of low impact vehicles of not only public strategies but also operational aspects characterizing urban freight distribution systems.

Design/methodology/approach

A System Dynamics model based on the Bass diffusion theory computes the number of adopters of low-emission vehicles together with the quantity of vans required and the associated economic savings. The model includes variables about freight demand, delivery frequency, van carrying capacity, routes, stops, distances traveled, and vehicle charging stations. A sensitivity analysis has been completed to identify the main diffusion levers. The focus is on advertising and other drivers, such as public contributions, taxes traditional polluting vehicles are subjected to, as well as on routing optimization strategies.

Findings

Advertising programs, green image, and word-of-mouth drive market saturation, although in a long time period. In fact, low-impact vehicles do not offer any economic advantage over traditional ones requiring higher investment and operating costs. Public incentives to purchase both green vehicles and charging stations, together with carbon taxes and a congestion charge affecting polluting vehicles, are able to shorten the adoption time. In particular, public intervention reveals to be effective only when it unfolds through a number of measures that both facilitate the use of environmentally friendly vehicles and discourage the adoption of traditional commercial vans. Route optimization also hastens the complete market saturation.

Research limitations/implications

This work fosters research about the mutual relationships between the diffusion of low-emission commercial vehicles and the operational and contextual CL factors. It provides a structured approach for investigating the feasibility of innovative good vehicles that might be part of assessments of CL measures and requirements. Finally, the model supports studies about the cooperation among stakeholders to identify effective commercial vehicle fleets.

Practical implications

This study fosters collaboration among CL players by providing a roadmap to identify the key factors for the diffusion of environmentally friendly freight vehicles. It also enables freight carriers to assess the operational and economic feasibility of adopting low-impact vehicles. Finally, it might assist public authorities in capturing the effects of new urban transportation policies prior to their implementation.

Originality/value

Most of the current CL literature defines policies and analyzes their effects. Also, there are several contributions on the diffusion of low emission cars. The present study is one of the first works on the diffusion of low-impact commercial vehicles in urban areas by considering the associated key operational factors. A further value is that the proposed model combines operational variables with economic and environmental issues.

Details

The International Journal of Logistics Management, vol. 28 no. 4
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 5 January 2015

Vittore Cossalter, Alberto Doria, Marco Ferrari, Enrico Giolo, Nicola Bianchi, Claudio Martignoni and Fabio Bovi

Velomobiles or bicycles cars are human-powered vehicles, enclosed for improving aerodynamic performance and protection from weather and collisions. The purpose of this paper is to…

Abstract

Purpose

Velomobiles or bicycles cars are human-powered vehicles, enclosed for improving aerodynamic performance and protection from weather and collisions. The purpose of this paper is to design and develop a three-wheeled velomobile equipped with a hybrid human-electric propulsion system.

Design/methodology/approach

The mechanical layout has been developed in order to improve safety, a CAD code has been used for the design and the dynamic performances have been studied by means of specific multi-body codes. The electric propulsion system has been designed both with analytical and FEM methods.

Findings

A special three-wheeled tilting vehicle layout equipped with a four-bar linkage connection has been developed. A particular synchronous reluctance machine has been developed, which is very suitable for human-electric hybrid propulsion. A MATLAB code for integrated mechanical and electrical analysis has been developed.

Originality/value

A new kind of light vehicle has been conceived. A new synchronous reluctance machine with high efficiency has been developed. A performance analysis in electric, human and hybrid working modes has been presented, which takes into account the specific features of both the electric motor and the pedaling legs. A prototype of the vehicle has been built.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Omar Hegazy, Joeri Van Mierlo, Ricardo Barrero, Noshin Omar and Philippe Lataire

The purpose of this paper is to optimize the design and power management control fuel cell/supercapacitor and fuel cell/battery hybrid electric vehicles and to provide a…

Abstract

Purpose

The purpose of this paper is to optimize the design and power management control fuel cell/supercapacitor and fuel cell/battery hybrid electric vehicles and to provide a comparative study between the two configurations.

Design/methodology/approach

In hybrid electric vehicles (HEVs), the power flow control and the powertrain component sizing are strongly related and their design will significantly influence the vehicle performance, cost, efficiency and fuel economy. Hence, it is necessary to assess the power flow management strategy at the powertrain design stage in order to minimize component sizing, cost, and the vehicle fuel consumption for a given driving cycle. In this paper, the PSO algorithm is implemented to optimize the design and the power management control of fuel cell/supercapacitor (FC/SC) and fuel cell/battery (FC/B) HEVs for a given driving cycle. The powertrain and the proposed control strategy are designed and simulated by using MATLAB/Simulink. In addition, a comparative study of fuel cell/supercapacitor and fuel cell/battery HEVs is analyzed and investigated for adequately selecting of the appropriate HEV, which could be used in industrial applications.

Findings

The results have demonstrated that it is possible to significantly improve the hydrogen consumption in fuel cell hybrid electric vehicles (FCHEVs) by applying the PSO approach. Furthermore, by analyzing and comparing the results, the FC/SC HEV has slightly higher fuel economy than the FC/B HEV.

Originality/value

The addition of electrical energy storage such as supercapacitor or battery in fuel cell‐based vehicles has a great potential and a promising approach for future hybrid electric vehicles (HEV). This paper is mainly focused on the optimal design and power management control, which has significant influences on the vehicle performance. Therefore, this study presents a modified control strategy based on PSO algorithm (CSPSO) for optimizing the power sharing between sources and reducing the components sizing. Furthermore, an interleaved multiple‐input power converter (IMIPC) is proposed for fuel cell hybrid electric vehicle to reduce the input current/output voltage ripples and to reduce the size of the passive components with high efficiency compared to conventional boost converter. Meanwhile, the fuel economy is improved. Moreover, a comparative study of FC/SC and FC/B HEVs will be provided to investigate the benefits of hybridization with energy storage system (ESS).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 August 2022

Lionel Dongmo Fouellefack, Lelanie Smith and Michael Kruger

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable…

Abstract

Purpose

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable of achieving a high range and endurance due to the low energy density of its batteries. Alternatively, conventional UAVs (cUAVs) using fuel with an internal combustion engine (ICE) produces more noise and thermal signatures which is undesirable, especially if the air vehicle is required to patrol at low altitudes and remain undetected by ground patrols. This paper aims to investigate the impact of implementing hybrid propulsion technology to improve on the endurance of the UAV (based on a 13.6 kg UAV).

Design/methodology/approach

A HE-UAV model is developed to analyze the fuel consumption of the UAV for given mission profiles which were then compared to a cUAV. Although, this UAV size was used as reference case study, it can potentially be used to analyze the fuel consumption of any fixed wing UAV of similar take-off weight. The model was developed in a Matlab-Simulink environment using Simulink built-in functionalities, including all the subsystem of the hybrid powertrain. That is, the ICE, electric motor, battery, DC-DC converter, fuel system and propeller system as well as the aerodynamic system of the UAV. In addition, a ruled-based supervisory controlled strategy was implemented to characterize the split between the two propulsive components (ICE and electric motor) during the UAV mission. Finally, an electrification scheme was implemented to account for the hybridization of the UAV during certain stages of flight. The electrification scheme was then varied by changing the time duration of the UAV during certain stages of flight.

Findings

Based on simulation, it was observed a HE-UAV could achieve a fuel saving of 33% compared to the cUAV. A validation study showed a predicted improved fuel consumption of 9.5% for the Aerosonde UAV.

Originality/value

The novelty of this work comes with the implementation of a rule-based supervisory controller to characterize the split between the two propulsive components during the UAV mission. Also, the model was created by considering steady flight during cruise, but not during the climb and descend segment of the mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 1997

Peter V. Buca and James Brausen

The electric vehicle has been viewed as a technological solution to the dual plagues of dwindling fossil fuel supplies and pollutant emissions from gasoline powered vehicles

2086

Abstract

The electric vehicle has been viewed as a technological solution to the dual plagues of dwindling fossil fuel supplies and pollutant emissions from gasoline powered vehicles. Futurists see a world where most personal transportation is electrically powered with energy supplied by tomorrow's power plants. In that future world, automobile power sources — representing millions of uncontrollable sources of pollution and energy waste — are consolidated into fewer, manageable, generators in fixed locations. With fixed and relatively few sources of pollution, resources can be better focused to provide clean, inexpensive energy for transportation. Many people share this vision of the future but few have been able to see how it can be brought into existence. Initial attempts have focused on legislation to stimulate the development of this market. As with any new technology, the electric vehicle field has developed its own terminology. For purposes of clarity throughout mis paper please bear in mind the following definitions.

Details

Competitiveness Review: An International Business Journal, vol. 7 no. 1
Type: Research Article
ISSN: 1059-5422

Article
Publication date: 1 January 2012

Grzegorz Ombach

An electrical revolution in the automotive sector was decided on at the end of 2008, when the European Parliament passed legislation of lower CO2 emissions of new cars. This…

1143

Abstract

Purpose

An electrical revolution in the automotive sector was decided on at the end of 2008, when the European Parliament passed legislation of lower CO2 emissions of new cars. This causes and forces the development of alternative concepts of propulsion systems and alternative fuels. These new trends of propulsion technologies such as hybrid and pure electric drive will have an impact on the entire design of cars. The purpose of this paper is to present an evolution of selected fractional horsepower electrical drives used in cars. Analysis of electromechanical components can be divided into two groups: the first one contains the currently used subsystems, e.g. electric power steering system, engine cooling systems, etc.; and the second one presents the development of new components, e.g. electric air‐conditioning compressor and other by‐wire technologies. Additionally, the development and trends of new materials and technologies used in electrical drives for the automotive industry are presented.

Design/methodology/approach

Performed analysis based on a review of the literature and the author's own research and experience in the area of electromechanical systems for automotive applications. During motor design, computer numerical simulation method, CAD and experiment were used. The development perspectives in the area of electromechanical systems in automotive area are presented. Additionally, the evolution of fractional horse power electric motors, with the influence of new developments in the area of electric vehicles, are analysed and presented.

Findings

The presented analysis shows that a change of technology from brush type motors into brushless is inevitable. Additionally, further miniaturization will be conducted using a higher energy permanent magnet. Furthermore, an increase of efficiency will be achieved by increasing the voltage level from 12 V to 48 V or even higher, e.g. 120 V.

Originality/value

This is the first paper, where, in a comprehensive way, developments of fractional horse power electromechanical systems for electric and hybrid vehicles are presented. The results of this paper can be utilized during the creation of the products' road‐maps in this area.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 July 2019

Carlo Rafele, Giulio Mangano, Anna Corinna Cagliano and Antonio Carlin

This paper aims to evaluate different logistics configuration to deliver batteries from the supplier to the production lines of a European carmaker who is implementing new…

Abstract

Purpose

This paper aims to evaluate different logistics configuration to deliver batteries from the supplier to the production lines of a European carmaker who is implementing new propulsions for its models.

Design/methodology/approach

Several scenarios about the supply chain for traction batteries have been identified based on the company’s requirements and constraints. Then, the variables used for the assessment of each scenario have been selected to calculate the unit battery supply chain cost.

Findings

The results underline that a direct transport without intermediate nodes is the cheapest one. On the contrary, an additional warehouse makes the organization of the network more complex. However, with this configuration, it is possible to cover the risk of supply since that a certain level of inventory is always guaranteed.

Research limitations/implications

This study is limited to the analysis of only one model car, and just manual operations have been taken into account for computing the human resource time and cost. The present study is one of the first works exploring the organization of the supply chain for the batteries integrated in electric and hybrid vehicles together with the choice of the location of the related warehouses.

Originality/value

This paper is one of the first work on the assessment of batteries’ supply chain that are going to be integrated in low impact vehicles, focusing on location of the associated warehouse. The evaluation is carried out by taking into account all the sources of cost.

Details

International Journal of Energy Sector Management, vol. 14 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 1 January 2013

Massimo Barcaro and Nicola Bianchi

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway…

Abstract

Purpose

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway traction and naval propulsion.

Design/methodology/approach

Focus is given on both synchronous permanent magnet and reluctance machines. An overview of the design rules are provided, covering the topics of: fractional‐slot windings, fault‐tolerant configurations, flux‐weakening capability, and torque quality.

Findings

The peculiarities of these machines and the advanced design considerations to fit the automotive requirements are analyzed.

Originality/value

The paper includes a wide description of innovative electrical machines for electric vehicles, including not only the traction capability, but also analysis of features as weight reduction, torque ripple reduction, increase of fault tolerance, and so on.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 2 May 2018

Yashpal Malik, Nirupama Prakash and Ajay Kapoor

The Indian government has set an ambitious target for reducing the import of fossil fuels by 10% and introducing an all-electric car fleet by 2030. The Government of India…

Abstract

The Indian government has set an ambitious target for reducing the import of fossil fuels by 10% and introducing an all-electric car fleet by 2030. The Government of India launched the National Electric Mobility Mission Plan (NEMMP) 2020 in 2013 to promote Electric Vehicles (EVs) in India with the objective of providing incentives for use of EVs; encouraging research & development in the areas of battery technology, system integration, testing infrastructure; and promoting charging infrastructure. The Indian government is also working on a scheme by which an electric car can be purchased free of cost: zero down payments, and monthly payments out of savings on the cost of petrol. It is envisaged that sooner or later, e-vehicles will transform the automobile market and provide environmental sustainability to the society. Political stability to provide stable policies is expected to play a key role in driving the growth of such vehicles. So far, preliminary research has been undertaken on perception of Indian Society on EVs. Based on empirical research, this paper attempts to address the gap. A study was conducted from November 2016 to April 2017 in Delhi-NCR with a sample size of 220 professionals working in manufacturing and service industry to understand the upcoming green transport facilities and their perceived environmental benefits as perceived by the residents of the society. Convenience sampling was used to collect the data. The Study highlighted that the design and utility of the EVs need to be reshaped so that it can compete with the gasoline vehicles in the current environment. Almost 95% of the respondents are ready to pay a premium for new technology or EVs. The study revealed that infusion of capital support and government subsidies can play a key role in acquiring new customers and establishing the market for EVs in the Indian market. The results show that there is a need to enhance awareness of NEMMP scheme within the society so that the EV market share can be increased. The results highlight that with availability of options, society will use the transport system which is environment friendly.

Details

Environment, Politics, and Society
Type: Book
ISBN: 978-1-78714-775-1

Keywords

1 – 10 of over 3000