Search results

1 – 5 of 5
Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 10 August 2023

Rajneesh Kumar and Pradeep Kumar Jha

The purpose of this study is to explore how a time-varying electromagnetic stirring (EMS) affects the fluid flow and solidification behavior in a slab caster continuous casting…

Abstract

Purpose

The purpose of this study is to explore how a time-varying electromagnetic stirring (EMS) affects the fluid flow and solidification behavior in a slab caster continuous casting mold. Further, the study of inclusion movements in the mold is carried out under the effect of a time-varying electromagnetic field.

Design/methodology/approach

A three-dimensional coupled numerical model of solidification and magnetohydrodynamics has been developed for slab caster mold to investigate the inclusions transport by discrete phase model with the use of user-defined functions. Enthalpy porosity and the Lagrangian approach are applied to analyze the behavior of solidification and inclusion.

Findings

The study shows that the magnetic field density distribution has a radial symmetry in relation to the stirrer’s center. As the EMS current intensity increases, the strength of the lower recirculation zone gradually decreases and nearly disappears at higher intensities. Additionally, the area of localized remelting zone expands in the solidification front with rising current intensity. The morphology of inclusions and EMS current intensity have a significant impact on the behavior and movement of inclusions within the molten steel.

Practical implications

By using the model, one can optimize the EMS parameter to enhance the quality of steel casting through the elimination of impurities and by improving the microstructure of cast that mainly depend on solidification and flow patterns of molten steel.

Originality/value

Until now, the use of time-varying EMS in the slab caster mold to study solidification and inclusion behavior has not been explored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 March 2023

Lakhwinder Singh, Sangyul Ha, Sanjay Vohra and Manu Sharma

Modeling of material behavior by physically or microstructure-based models helps in understanding the relationships between its properties and microstructure. However, the…

Abstract

Purpose

Modeling of material behavior by physically or microstructure-based models helps in understanding the relationships between its properties and microstructure. However, the majority of the numerical investigations on the prediction of the deformation behavior of AA2024 alloy are limited to the use of phenomenological or empirical constitutive models, which fail to take into account the actual microscopic-level mechanisms (i.e. crystallographic slip) causing plastic deformation. In order to achieve accurate predictions, the microstructure-based constitutive models involving the underlying physical deformation mechanisms are more reliable. Therefore, the aim of this work is to predict the mechanical response of AA2024-T3 alloy subjected to uniaxial tension at different strain rates, using a dislocation density-based crystal plasticity model in conjunction with computational homogenization.

Design/methodology/approach

A dislocation density-based crystal plasticity (CP) model along with computational homogenization is presented here for predicting the mechanical behavior of aluminium alloy AA2024-T3 under uniaxial tension at different strain rates. A representative volume element (RVE) containing 400 grains subjected to periodic boundary conditions has been used for simulations. The effect of mesh discretization on the mechanical response is investigated by considering different meshing resolutions for the RVE. Material parameters of the CP model have been calibrated by fitting the experimental data. Along with the CP model, Johnson–Cook (JC) model is also used for examining the stress-strain behavior of the alloy at various strain rates. Validation of the predictions of CP and JC models is done with the experimental results where the CP model has more accurately captured the deformation behavior of the aluminium alloy.

Findings

The CP model is able to predict the mechanical response of AA2024-T3 alloy over a wide range of strain rates with a single set of material parameters. Furthermore, it is observed that the inhomogeneity in stress-strain fields at the grain level is linked to both the orientation of the grains as well as their interactions with one another. The flow and hardening rule parameters influencing the stress-strain curve and capturing the strain rate dependency are also identified.

Originality/value

Computational homogenization-based CP modeling and simulation of deformation behavior of polycrystalline alloy AA2024-T3 alloy at various strain rates is not available in the literature. Therefore, the present computational homogenization-based CP model can be used for predicting the deformation behavior of AA2024-T3 alloy more accurately at both micro and macro scales, under different strain rates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 October 2023

Mohammad Saeid Aghighi, Christel Metivier and Sajad Fakhri

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of…

Abstract

Purpose

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of viscoplastic fluids in cavities and, if so, under what conditions.

Design/methodology/approach

The wall slip was evaluated using a model created for viscoplastic (Bingham) fluids. The coupled conservation equations were solved numerically using the finite element method. Simulations were performed for various parameters: the Rayleigh number, yield number, slip yield number and friction number.

Findings

Wall slip determines two essential yield stresses: a specific yield stress value beyond which wall slippage is impossible (S_Yc); and a maximum yield stress beyond which convective flow is impossible (Y_c). At low Rayleigh numbers, Y_c is smaller than S_Yc. Hence, the flow attained a stable (conduction) condition before achieving the no-slip condition. However, for more significant Rayleigh numbers Y_c exceeded S_Yc. Thus, the flow will slip at low yield numbers while remaining no-slip at high yield numbers. The possibility of slipping on the wall increases the buoyancy force, facilitating the onset of Rayleigh–Bénard convection.

Originality/value

An essential aspect of this study lies in its comprehensive examination of the effect of slippage on the natural convection flow of viscoplastic materials within a cavity, which has not been previously investigated. This research contributes to a new understanding of the viscoplastic fluid behavior resulting from slipping.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 5 of 5