Search results

1 – 10 of 330
Article
Publication date: 2 October 2017

Rachman Setiawan and Musthafa Akbar

Integrity assessment is used to ensure reliability operation of a pressurized equipment containing defects. Based on data of cylindrical shell dimensions, operation conditions…

Abstract

Purpose

Integrity assessment is used to ensure reliability operation of a pressurized equipment containing defects. Based on data of cylindrical shell dimensions, operation conditions, material properties and crack dimensions, an assessment can be carried out, using either Level 1, Level 2 or Level 3 procedure. Assessment using Level 3 procedure within the code requires a finite element simulation in order to generate both the evaluation point and the failure assessment diagram (FAD) that serves as the acceptance criteria. The purpose of this paper is to provide the numerical data which are used for integrity assessment of a pressure vessel containing crack. Here, a parametric study has been carried out to generate such result for the cases of longitudinal crack defect in a cylindrical shell for a number of common cases, in terms of thickness-to-radius ratio, crack size ratio and crack aspect ratio.

Design/methodology/approach

The evaluation of stress intensity factor is determined through J-integral parameter found using a finite element analysis with a specially meshed strategy incorporating the crack. A comparison is made against stress intensity factor provided by the code.

Findings

A good agreement is obtained with percent error of 2.13 percent for low aspect ratio crack, and 0.57 percent for high aspect ratio crack. Furthermore, a study has been carried out using the methodology for 160 cases, covering both cases already available in the code and other cases of crack in cylindrical shells. The result can be used as a complement to the existing tabular data available in the code for Level 2 assessment, to be used for integrity analysis of damaged cylindrical shells based on the FAD criteria.

Originality/value

The result can be used as a complement to the existing tabular data available in the API 579 code for Level 2 assessment, to be used for integrity analysis of damaged cylindrical shells based on the FAD criteria. New equations were generated based on finite element analysis and can be used for Level 3 assessment of the code.

Details

International Journal of Structural Integrity, vol. 8 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 August 2015

Jirí Behal, Petr Homola and Roman Ružek

The prediction of fatigue crack growth behaviour is an important part of damage tolerance analyses. Recently, the author’s work has focused on evaluating the FASTRAN retardation…

96

Abstract

Purpose

The prediction of fatigue crack growth behaviour is an important part of damage tolerance analyses. Recently, the author’s work has focused on evaluating the FASTRAN retardation model. This model is implemented in the AFGROW code, which allows different retardation models to be compared. The primary advantage of the model is that all input parameters, including those for an initial plane-strain state and its transition to a plane-stress-state, are objectively measured using standard middle-crack-tension M(T) specimens. The purpose of this paper is to evaluate the ability of the FASTRAN model to predict correct retardation effects due to high loading peaks that occur during variable amplitude loading in sequences representative of an aircraft service.

Design/methodology/approach

This paper addresses pre-setting of the fracture toughness K R (based on J-integral J Q according to ASTM1820) in the FASTRAN retardation model. A set of experiments were performed using specimens made from a 7475-T7351 aluminium alloy plate. Loading sequences with peaks ordered in ascending-descending blocks were used. The effect of truncating and clipping selected load levels on crack propagation behaviour was evaluated using both experimental data and numerical analyses. The findings were supported by the results of a fractographic analysis.

Findings

Fatigue crack propagation data defined using M(T) specimens made from Al 7475-T7351 alloy indicate the difficulty of evaluating the following two events simultaneously: fatigue crack increments after application of loads with maximum amplitudes that exceeded J Q and subcritical crack increments caused by loads at high stress intensity factors. An effect of overloading peaks with a maximum that exceeds J Q should be assessed using a special analysis beyond the scope of the FASTRAN retardation model.

Originality/value

Measurements of fatigue crack growth on specimens made from 7475 T7351 aluminium alloy were carried out. The results indicated that simultaneously evaluating fatigue crack increments after application of the load amplitude above J Q and subcritical increments caused by the loads at high stress intensity factors is difficult. Experiments demonstrated that if the fatigue crack reaches a specific length, the maximal amplitude load induces considerable crack growth retardation.

Details

International Journal of Structural Integrity, vol. 6 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 January 1987

T.K. Hellen and W.S. Blackburn

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are…

Abstract

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are reviewed, classified broadly into two groups, as domain integrals and virtual crack extension techniques. In addition to considerations of how such quantities may be calculated by finite elements, assessment methods of conducting the actual incremental analyses are described.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 13 June 2016

Victor Iliev Rizov

The purpose of this paper is to perform a theoretical analysis of non-linear delamination fracture in cantilever beam opened notch (CBON) configuration. It is assumed that the…

Abstract

Purpose

The purpose of this paper is to perform a theoretical analysis of non-linear delamination fracture in cantilever beam opened notch (CBON) configuration. It is assumed that the non-linear mechanical behavior of the CBON can be described by using a stress-strain curve with power-law hardening.

Design/methodology/approach

The fracture analysis is carried-out by applying the integration contour independent J-integral. For this purpose, a model based on the technical beam theory is used. Equation is derived for determination of the CBON specimen curvature in elastic-plastic stage of deformation. The equation is solved by using the MatLab program system. Solutions of the J-integral are obtained at linear-elastic as well as elastic-plastic behavior of the CBON. The influence of the power-law exponent on the non-linear fracture is evaluated.

Findings

The analysis reveals that the J-integral value increases when the exponent of the power-law increases. The solution obtained here is very useful for parametric analyses of the non-linear fracture behavior, since the simple formulas derived capture the essentials of the fracture response.

Practical implications

Beside for parametric investigations, the solution obtained here can also be applied for calculating the critical J-integral value at non-linear behavior using experimentally determined critical fracture load at the onset of crack growth from the initial crack tip position in the CBON configuration.

Originality/value

An analysis is performed of the non-linear fracture in the CBON configuration by applying the J-integral approach, assuming that the mechanical response can be modeled using a stress-strain curve with power-law hardening.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 October 2017

Victor Rizov

The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the…

Abstract

Purpose

The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the material non-linearity. A delamination crack located arbitrarily along the beam height was considered in this study.

Design/methodology/approach

The beam mechanical behaviour was described by using the Ramberg-Osgood stress-strain relation. Fracture was analysed by applying the J-integral approach. Besides by using symmetric Ramberg-Osgood stress-strain curve, fracture was investigated also by Ramberg-Osgood stress-strain curve that is not symmetric with respect to tension and compression. The J-integral solutions were verified by performing elastic-plastic analyses of the strain energy release rate.

Findings

The effects of crack location and material properties on the non-linear fracture behaviour were evaluated. It was found that the material non-linearity leads to increase of the J-integral values. Therefore, the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members composed by layered materials. The analytical solutions derived are very useful for parametric investigations of delamination fracture with considering the material non-linearity. The results obtained can be applied for optimisation of the beam structure with respect to fracture performance.

Originality/value

The present study contributes for the understanding of delamination fracture in layered beams that exhibit non-linear material behaviour.

Details

International Journal of Structural Integrity, vol. 8 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 February 2018

Victor Rizov

This paper aims to analyze the elastic-plastic delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration.

Abstract

Purpose

This paper aims to analyze the elastic-plastic delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration.

Design/methodology/approach

The mechanical response of beam is described by a power-law stress-strain relation. The fracture is studied analytically in terms of the strain energy release rate by considering the beam complimentary strain energy. The beam can have an arbitrary number of layers. Besides, each layer may have different thickness and material properties. Also, in each layer, the material is functionally graded along the beam width. A delamination crack is located arbitrary between layers. Thus, the crack arms have different thickness.

Findings

The analysis developed is used to elucidate the effects of crack location, material gradient and non-linear behaviour of material on the delamination fracture. It is found that the material non-linearity leads to increase in the strain energy release rate. Therefore, the non-linear behaviour of material should be taken into account in fracture mechanics-based safety design of structural members and components made of multilayered functionally graded materials. The analysis revealed that the strain energy release rate can be effectively regulated by using appropriate material gradients in the design stage of multilayered functionally graded constructions.

Originality/value

Delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration is studied in terms of the strain energy release rate by taking into account the material non-linearity.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 April 2018

S.A. Krishnan, G. Sasikala, A. Moitra, S.K. Albert and A.K. Bhaduri

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening…

Abstract

Purpose

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening steel like AISI type 316L(N) stainless steel.

Design/methodology/approach

Ductile damage parameter and far field J-integral have been obtained from standard FEM analysis for a crack/notch tip undergoing large plastic deformation and resulting in crack initiation/growth. In conjunction with experimental results, the damage variable for low strength and high hardening material has been derived in terms of continuum parameters: equivalent plastic strain (εeq) and stress triaxiality (φ). The material parameters for damage initiation and growth in 316LN SS have been evaluated from tensile and fracture tests. With these material tensile/fracture parameters as input, elastic-plastic eXtended Finite Element Method (X-FEM) simulations were carried out on compact tension (CT) specimen geometry under varying initial stress triaxiality conditions.

Findings

The material parameters for damage initiation and growth have been assessed and calibrated by comparing the X-FEM predicted load-displacement responses with the experimental results. It is observed that the deviations in the predicted load values from the experimental data are within 6 percent for specimens with a/W=0.39, 0.55, 0.64, while for a/W=0.72, it is 17 percent.

Originality/value

The present study is a part of developing methods to obtain calibrated material damage parameters for crack growth simulation of components made of AISI 316L(N) stainless steel. This steel is used for fast breeder reactor-based power plant being built at Kalpakkam, India.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 July 2019

Feizal Yusof and Karh Heng Leong

Crack tip stresses are used to relate the ability of structures to perform under the influence of cracks and defects. One of the methods to determine three-dimensional crack tip…

Abstract

Purpose

Crack tip stresses are used to relate the ability of structures to perform under the influence of cracks and defects. One of the methods to determine three-dimensional crack tip stresses is through the J-Tz method. The J-Tz method has been used extensively to characterize the stresses of cracked geometries that demonstrate positive T-stress but limited in characterizing negative T-stresses. The purpose of this paper is to apply the J-Tz method to characterize a three-dimensional crack tip stress field in a changing crack length from positive to negative T-stress geometries.

Design/methodology/approach

Elastic-plastic crack border fields of deep and shallow cracks in tension and bending loads were investigated through a series of three-dimensional finite element (FE) and analytical J-Tz solutions for a range of crack lengths ranging from 0.1⩽a/W⩽0.5 for two thickness extremes of B/(Wa)=1 and 0.05.

Findings

Both the FE and the J-Tz approaches showed that the combined in-plane and the out-of-plane constraint loss were differently affected by the T-stress and the out-of-plane size effects when the crack length changed from deep to shallow cracks. The conditions of the J-Tz dominance on the three-dimensional crack front tip were shown to be limited to positive T-stress geometries, and the J-Tz-Q2D approach can extend the crack border dominance of the three-dimensional deep and shallow bend models along the crack front tip until perturbed by an elastic-plastic corner field.

Practical implications

The paper reports the limitation of the J-Tz approach, which is used to calculate the state of three-dimensional crack tip stresses in power law hardening materials. The results from this paper suggest that the characterization of the three-dimensional crack tip stress in power law hardening materials is still an open issue and requires other suitable solutions to solve the problem.

Originality/value

This paper demonstrates a thorough analysis of a three-dimensional elastic-plastic crack tip fields for geometries that are initially either fully constrained (positive T-stress) or unconstrained (negative T-stress) crack tip fields but, subsequently, the T-stress sign changes due to crack length reduction and specimen thickness increase. The J-Tz stress-based method has been tested and its dominance over the crack tip field is shown to be affected by the combined in-plane and the out-of-plane constraints and the corner field effects.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 March 2020

Imad Barsoum, Hamda Almansoori, Aaesha Ahmed Almazrouei and Ebru Gunister

The main aim of this study is to determine the fracture toughness and accordingly to predict the fracture initiation, crack propagation and mode of crack extension accurately in…

Abstract

Purpose

The main aim of this study is to determine the fracture toughness and accordingly to predict the fracture initiation, crack propagation and mode of crack extension accurately in polypropylene subsea pipes subjected to internal pressure.

Design/methodology/approach

Tensile test was performed following the ISO 527–1 standard. An elastic-plastic constitutive model was developed based on the tensile test results, and it is implemented in the FEA model to describe the constitutive behaviour of the polypropylene material. Three-point bend tests with linear-elastic fracture mechanics (LEFM) approach were conducted following ISO-13586 standard, from which the average fracture toughness of the polypropylene pipe material in crack-opening mode was found as KIc = 3.3 MPa√m. A numerical model of the experiments is developed based on the extended finite element method (XFEM), which showed markedly good agreement with the experimental results.

Findings

The validated XFEM modelling approach is utilised to illustrate its capabilities in predicting fracture initiation and crack propagation in a polypropylene subsea pipe subjected to an internal pressure containing a semi-elliptical surface crack, which agrees well with existing analytical solutions. The XFEM model is capable of predicting the crack initiation and propagation in the polypropylene pipe up to the event of leakage.

Originality/value

The methodology proposed herein can be utilised to assess the structural integrity and resistance to fracture of subsea plastic pipes subjected to operational loads (e.g. internal pressure).

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 2005

Vratislav Kafka and David Vokoun

The general concept of mesomechanical constitutive modeling developed by the first author is applied to the description of inelastic mechanical behavior of concrete under very…

Abstract

The general concept of mesomechanical constitutive modeling developed by the first author is applied to the description of inelastic mechanical behavior of concrete under very complex loading in three orthogonal directions. Concrete is modeled as an isotropic heterogeneous medium consisting of elastic inclusions that are embedded in a plastically deforming and fracturing matrix. The fracturing process of the matrix results in cumulative damage, in changes of elastic moduli, and in volumetric expansion. It was the confrontation with the complex experimental data presented in this study that led us to a new version of the hypotheses on which our special model for concrete is based. Three kinds of deformation modes in different loading segments are differentiated: elastic‐plastic‐damaging deformation, elastic‐plastic deformation, and only elastic deformation. Criteria for distinguishing between these three kinds of deformation are newly formulated. The results of this isotropic mesoscale model are shown to agree reasonably well with the experimental data received for very complex loading paths.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 330