Search results

1 – 10 of 244
Article
Publication date: 1 September 2002

C.P. Providakis and S.G. Kourtakis

The feasibility of advanced viscoplastic models for non‐linear boundary element analysis of metallic structural components with dependence on thermomechanical history is…

Abstract

The feasibility of advanced viscoplastic models for non‐linear boundary element analysis of metallic structural components with dependence on thermomechanical history is investigated. Several numerical examples are presented using the boundary element implementation of two different internal state variable viscoplastic models to the solution of time‐dependent inelastic problems arising in creeping metallic structural components under the combined action of high temperature loading gradients and quasi‐static mechanical loading conditions. To demonstrate the efficiency of the implemented viscoplastic models, the results obtained using the direct boundary element methodology are compared with those obtained by both analytical and finite element solution as well as, for different numerical results of plane strain thermoviscoplastic deformation problems under general thermomechanical loading.

Details

Engineering Computations, vol. 19 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2014

Asghar Zajkani, Abolfazl Darvizeh and Mansour Darvizeh

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular…

Abstract

Purpose

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular plates.

Design/methodology/approach

Constitutive equations are implemented incrementally by the Von-Kármán finite deflection system which is coupled with a mixed strain hardening rule and physical-base viscoplastic models. Time integrations of the equations are done by the return mapping technique through the cutting-plane algorithm. An integrated solution is established by pseudo-spectral collocation methodology. The Chebyshev basis functions are utilized to evaluate the coefficients of displacement fields. Temporal terms are discretized by the Houbolt marching method. Spatial linearizations are accomplished by the quadratic extrapolation technique.

Findings

Results of the center point deflections, effective plastic strain and stress (dynamic flow stress) and temperature rise are compared for three features of the Von-Kármán system. Identifying time history of resultant stresses, propagations of the viscoplastic plastic zones are illustrated for two circumstances; with considering strain rate and hardening effects, and without them. Some of modeling and computation aspects are discussed, carefully. When the results are compared with experimental data of shock wave loadings and finite element simulations, good agreements between them are observed.

Originality/value

This computational approach makes coupling the structural equations with the physical descriptions of the high rate deformation through step-by-step spectral solution of the constitutive equations.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1998

Y. Chastel, C. Magny and F. Bay

A finite element model for multimaterial configurations is presented. The material behavior of each body within a composite material is given by an elasticviscoplastic

Abstract

A finite element model for multimaterial configurations is presented. The material behavior of each body within a composite material is given by an elasticviscoplastic constitutive law. Automatic remeshing techniques which preserve the topology of the different bodies of material are used to simulate large deformations of the multiphasic system. An experimental set‐up has been designed in order to simulate the compaction of multilayer composite materials. Plasticine was chosen as a model material. Experimental results are used to validate the finite element model for consolidation of multilayer composites.

Details

Engineering Computations, vol. 15 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2005

Michel Bellet, Olivier Jaouen and Isabelle Poitrault

The present paper addresses the computer modelling of pipe formation in metal castings.

1124

Abstract

Purpose

The present paper addresses the computer modelling of pipe formation in metal castings.

Design/methodology/approach

As a preliminary, a brief review of the current state‐of‐the‐art in pipe shrinkage computation is presented. Then, in first part, the constitutive equations that have to be considered in thermomechanical computations are presented, followed by the main lines of the mechanical finite element resolution. A detailed presentation of an original arbitrary Lagrangian‐Eulerian (ALE) formulation is given, explaining the connection between the Lagrangian and the quasi Eulerian zones, and the treatment of free surfaces.

Findings

Whereas most existing methods are based on thermal considerations only, it is demonstrated in the current paper that this typical evolution of the free surface, originated by shrinkage at solidification front and compensating feeding liquid flow, can be effectively approached by a thermomechanical finite element analysis.

Research limitations/implications

Future work should deal with the following points: identification of thermo‐physical and rheological data, automatic and adaptive mesh refinement, calculation of the coupled deformation of mold components, development of a two‐phase solid/liquid formulation.

Practical implications

An example of industrial application is given. The proposed method has been implemented in the commercial software THERCAST® dedicated to casting simulation.

Originality/value

The proposed numerical methods provide a comprehensive approach, capable of modelling concurrently all the main phenomena participating in pipe formation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2000

Stefan Doll, Karl Schweizerhof, Ralf Hauptmann and Christof Freischläger

As known from nearly incompressible elasticity, selective reduced integration (SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D and 3D…

Abstract

As known from nearly incompressible elasticity, selective reduced integration (SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D and 3D solid elements. This method of finite elastoviscoplasticity is discussed as are its well‐known limitations. In this context, an isochoric‐volumetric decoupled material behavior is assumed and thus the additive deviatoric‐volumetric decoupling of the consistent algorithmic moduli tensor is essential. By means of several numerical examples, the performance of elements using selective reduced integration is demonstrated and compared to the performance of other elements such as the enhanced assumed strain elements. It is shown that a minor modification, with little numerical effort, leads to rather robust element behaviour. The application of this process to so‐called solid‐shell elements for thin‐walled structures is also discussed.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4709

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2004

J.P. Morris, M.B. Rubin, S.C. Blair, L.A. Glenn and F.E. Heuze

We present the preliminary results from a parameter study investigating the stability of underground structures in response to explosion‐induced strong ground motions. In…

1660

Abstract

We present the preliminary results from a parameter study investigating the stability of underground structures in response to explosion‐induced strong ground motions. In practice, even the most sophisticated site characterization may lack key details regarding precise joint properties and orientations within the rock mass. Thus, in order to place bounds upon the predicted behavior of a given facility, an extensive series of simulations representing different realizations may be required. The influence of both construction parameters (reinforcement, rock bolts, liners) and geological parameters (joint stiffness, joint spacing and orientation, and tunnel diameter to block size ratio) must be considered. We discuss the distinct element method (DEM) with particular emphasis on techniques for achieving improved computational efficiency, including the handling of contact detection and approaches to parallelization. We introduce a new approach for simulating deformation of the discrete blocks using the theory of a Cosserat point, which does not require internal discretization of the blocks. We also outline the continuum techniques we employ to obtain boundary conditions for the distinct element simulations. We present results from simulations of dynamic loading of several generic subterranean facilities in hard rock, demonstrating the suitability of the DEM for this application. These results demonstrate the significant role that joint geometry plays in determining the response of a given facility.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Xiaohua Bao, Guanlin Ye, Bin Ye, Yanbin Fu and Dong Su

The purpose of this paper is to evaluate the co-seismic and post-seismic behaviors of an existed soil-foundation system in an actual alternately layered sand/silt ground including…

Abstract

Purpose

The purpose of this paper is to evaluate the co-seismic and post-seismic behaviors of an existed soil-foundation system in an actual alternately layered sand/silt ground including pore water pressure, acceleration response, and displacement et al. during and after earthquake.

Design/methodology/approach

The evaluation is performed by finite element method and the simulation is performed using an effective stress-based 2D/3D soil-water coupling program DBLEAVES. The calculation is carried out through static-dynamic-static three steps. The soil behavior is described by a new rotational kinematic hardening elasto-plastic cyclic mobility constitutive model, while the footing and foundation are modeled as elastic rigid elements.

Findings

The shallow (short-pile type) foundation has a better capacity of resisting ground liquefaction but large differential settlement occurred. Moreover, most part of the differential settlement occurred during earthquake motion. Attention should be paid not only to the liquefaction behavior of the ground during the earthquake motion, but also the long-term settlement after earthquake should be given serious consideration.

Originality/value

The co-seismic and post-seismic behavior of a complex ground which contains sand and silt layers, especially long-term settlement over a period of several weeks or even years after the earthquake, has been clarified sufficiently. In some critical condition, even if the seismic resistance is satisfied with the design code for building, detailed calculation may reveal the risk of under estimation of differential settlement that may give rise to serious problems.

Article
Publication date: 1 September 2000

V.A. Norris, M.A. Crisfield, D.C. Kothari, C.J. Lawrence and B.J. Briscoe

Describes an elastic visco‐plastic finite element formulation that is applied to the modelling of pastes. Comparisons are made with experimental results obtained for a particular…

Abstract

Describes an elastic visco‐plastic finite element formulation that is applied to the modelling of pastes. Comparisons are made with experimental results obtained for a particular paste, plasticine. Special attention is applied to the frictional boundary conditions, for which the usual Coulombic procedure is augmented by a “cohesive” wall friction component. Viscous effects also are considered.

Details

Engineering Computations, vol. 17 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 244