Search results

1 – 10 of 11
Article
Publication date: 23 December 2021

Ewa Klimiec, Piotr Zachariasz, Halina Kaczmarek, Bogusław Królikowski and Sławomir Mackiewicz

This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites…

Abstract

Purpose

This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites (thin films enriched with 5 and 10 wt% of mineral fillers as Sillikolloid P 87 and glass beads) should exhibit suitable structural elasticity within specific stress ranges. After the deformation force is removed, the sensor material must completely restore its original shape and size.

Design/methodology/approach

Estimating the stiffness tensor element (C33) for polymer films (nonpolar space-charge electrets) by broadband resonance ultrasound spectroscopy is a relatively simple method of determining the safe stress range generated in thin pressure sensors. Therefore, ultrasonic and piezoelectric studies were carried out on four composite it-PP films. First, the longitudinal velocity (vL) of ultrasonic waves passing through the it-PP film in the z-direction (thickness) was evaluated from the ω-position of mechanical resonance of the so-called insertion loss function. In turn, the d33 coefficient was calculated from accumulated piezoelectric charge density response to mechanical stress.

Findings

Research is at an early stage; however, it can be seen that the mechanical orientation of the it-PP film improves its piezoelectric properties. Moreover, the three-year electric charge stability of the it-PP film seems promising.

Originality/value

Ultrasonic spectroscopy can be successfully handled as a validation method in the small-lot production of polymer films with the air-cavities structure intended for pressure sensors. The structural repeatability of polymer films is strongly related to a homogeneous distribution of the electric charge on the electret surface.

Article
Publication date: 7 March 2016

Zhiming Ma, Tiejun Zhao, Jianzhuang Xiao and Ting Guan

Rebar corrosion in reinforced concrete is the major reason for the durability degradation, especially under harsh environment. This paper presents an experiment conducted to…

Abstract

Purpose

Rebar corrosion in reinforced concrete is the major reason for the durability degradation, especially under harsh environment. This paper presents an experiment conducted to investigate the influence of freeze-thaw cycles on the rebar corrosion in reinforced concrete. The purpose of this paper is to provide fundamental information about rebar corrosion under frost environment and improvement measures.

Design/methodology/approach

The related elastic modulus and compressive strength of different concrete specimens were measured after different freeze-thaw cycles. The accelerated rebar corrosion test was carried out after different freeze-thaw cycles; additionally, the value of calomel half-cell potential was determined. The actual rebar corrosion appearance was checked to prove the accuracy of the results of calomel half-cell potential.

Findings

The results show that frost damage aggravates the rebar corrosion rate and degree under freeze-thaw environment; furthermore, the results become more obvious with the freeze-thaw cycles increasing. Mixing the air-entrained agent into fresh concrete to prepare air-entrained concrete, increasing the cover thickness and processing the surface of concrete with a waterproofing agent can significantly improve the resistance to rebar corrosion. From the actual appearance of rebar corrosion, the results of calomel half-cell potential can well reflect the actual rebar corrosion in reinforced concrete.

Originality/value

The durability of reinforced concrete is mainly determined on chloride penetration that brings about rebar corrosion in chloride environments. Furthermore, the degradation of concrete durability becomes more serious in the harsh environment. As the concrete exposure to the freeze-thaw cycles environment, the freeze-thaw cycles accelerate the concrete damage, and the penetration of chloride into the concrete becomes easier because of the growing pore and crack sizes. In addition, rebar corrosion caused by chloride is one of the major forms of environmental attack on reinforced concrete. The tests conducted in this paper will describe the rebar corrosion in reinforced concrete under freeze-thaw environment.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 July 2017

Muhammad Masood Rafi, Tariq Aziz and Sarosh Hashmat Lodi

This paper aims to present the results of testing of low-strength concrete specimens exposed to elevated temperatures. These data are limited in the existing literature and do not…

Abstract

Purpose

This paper aims to present the results of testing of low-strength concrete specimens exposed to elevated temperatures. These data are limited in the existing literature and do not exist in Pakistan.

Design/methodology/approach

An experimental testing programme has been employed. Cylindrical specimens of 100 × 200 mm were used in the testing programme. These were heated at temperatures which were varied from 100°C to 900°C in increment of 100°C. Similar specimens were tested at ambient temperature as control specimens. The compressive and tensile properties of heat treated specimens were determined.

Findings

The colour of concrete started to change at 300°C and hairline cracks appeared at 400°C. Explosive spalling was observed in few specimens in the temperature range of 400°C-650°C which could be attributed to the pore pressure generated by steam. Significant loss of concrete compressive strength occurred on heating temperatures larger than 600°C, and the residual compressive strength was found to be 15 per cent at 900°C. Residual tensile strength of concrete became less than 10 per cent at 900°C. The loss of concrete stiffness reached 85 per cent at 600°C. Residual Poisson’s ratio of concrete increased at high temperatures and became nearly six times larger at 900°C as compared to that at ambient temperature.

Research limitations/implications

The parameters of the study included heating temperature and effects of temperature on strength and stiffness properties of the concrete specimens.

Practical implications

Building fire incidents have increased in Pakistan. As a large number of reinforced concrete (RC) buildings exist in the country, the data related to elevated temperature properties of concrete are required. These data are not available in Pakistan presently. The study aims at providing this information for the design engineers to enable them to assess and increase fire resistance of RC structural members.

Originality/value

The presented study is unique in its nature in that there is no published contribution to date, to the best of authors’ knowledge, which has been carried out to assess the temperature-dependent mechanical properties of concrete in Pakistan.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 April 2005

B.L. Wang

Piezoelectric ceramics are often combined with other materials to fabricate composites, which are used for constructions of intelligent systems. This paper is concerned with the…

Abstract

Piezoelectric ceramics are often combined with other materials to fabricate composites, which are used for constructions of intelligent systems. This paper is concerned with the fracture of a piezoelectric fiber embedded in an elastic matrix of finite radius. The fiber composite medium is subjected to the axially symmetric mechanical and electrical loads. Fourier and Hankel transforms are used to reduce the problem to the solution of a system of integral equations. Numerical solutions for the crack tip fields are obtained for various crack sizes and different piezoelectric fiber volume fractions. Both impermeable and permeable crack‐face electrical boundary conditions are considered. Applicability and effect of the crack‐face electrical boundary conditions are discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 May 2022

Erfan Najaf, Hassan Abbasi and Seyed Mehdi Zahrai

Today, using lightweight structural concrete plays a major role in reducing the damage to concrete structures. On the other hand, lightweight concretes have lower compressive and…

161

Abstract

Purpose

Today, using lightweight structural concrete plays a major role in reducing the damage to concrete structures. On the other hand, lightweight concretes have lower compressive and flexural strengths with lower impact resistance compared to ordinary concretes. The aim of this study is to investigate the effect of simultaneous use of waste glass powder, microsilica and polypropylene fibers to make sustainable lightweight concrete that has high compressive and flexural strengths, ductility and impact resistance.

Design/methodology/approach

In this article, the lightweight structural concrete is studied to compensate for the lower strength of lightweight concrete. Also, considering the environmental aspects, microsilica as a partial replacement for cement, waste glass powder instead of some aggregates and polypropylene fibers are used. Microsilica was used at 8, 10 and 12 wt% of cement. Waste glass powder was added to 20, 25 and 30 wt% of aggregates, while fibers were used at 0.5, 1 and 1.5 wt% of cement.

Findings

After making the experimental specimens, compressive strength, flexural strength and impact resistance tests were performed. Ultimately, it was concluded that the best percentage of used microsilica and glass powder was equal to 10 and 25%, respectively. Furthermore, using 1.5 wt% of fibers could significantly improve the compressive and flexural strengths of lightweight concrete and increase its impact resistance at the same time. For constructing a five-story building, by replacing cement with microsilica by 10 wt%, the amount of used cement is reduced by 5 tons, consequently producing 4,752 kg less CO2 that is a significant value for the environment.

Originality/value

The study provides a basis for making sustainable lightweight concrete with high strength against compressive, flexural and impact loads.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 1993

T. KANT and J.R. KOMMINENI

A unified approach is presented for the pseudo‐transient (static) linear and geometrically non‐linear analyses of composite laminates. A finite element idealization with a…

Abstract

A unified approach is presented for the pseudo‐transient (static) linear and geometrically non‐linear analyses of composite laminates. A finite element idealization with a four‐noded linear and a nine‐noded quadrilateral isoparametric elements, both belonging to the Lagrangian family are used in space discretization. An explicit time marching scheme is employed for time integration of the resulting discrete ordinary differential equations with the special forms of diagonal fictitious mass and/or damping matrices. The accuracy of the formulation is then established by comparing the presnt pseudo‐transient analysis results with the present static Newton‐Raphson method results and other available analytical closed‐form two dimensional and finite element solutions. The usefulness and effectiveness of this approach is established by comparing computational time required by this approach and Newton‐Raphson's approach.

Details

Engineering Computations, vol. 10 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 April 2017

Adnan Qadir and Uneb Gazder

The purpose of this study is to investigate the incorporation of lightweight aggregate concrete modify with fiber (LWACF) in water retaining structure. In developed countries…

Abstract

Purpose

The purpose of this study is to investigate the incorporation of lightweight aggregate concrete modify with fiber (LWACF) in water retaining structure. In developed countries LWACF is being successfully used as structural concrete; however, third-world countries such as Pakistan are still struggling to come up with the practical applications of lightweight concrete in the building and construction industry. One reason is because of the lack of reliable data regarding its performance as a structural member in the building and construction industry.

Design/methodology/approach

The present study inspected the flexural and shear tolerance of fiber-reinforced LWACF by testing six beam specimens’ cast, cured and tested after 28 days for the purpose. An overhead tank of 1,000-gallon capacity was also constructed to verify the application of LWACF by observing its water retention behavior. The experimental design included a mix design of concrete at a target strength of 21 MPa for control sample natural aggregate and for synthetic aggregate modified with polypropylene fibers. Compressive strengths of both categories of concrete were also determined by crushing the cylindrical samples at the age of 7, 14, 21 and 28 days. The cast beams were later subjected to the application of two-point loading test until failure.

Findings

It was found that the beams fabricated with LWACF possessed better resistance to cracks compared with those fabricated with normal weight concrete, both in terms of number and crack width. The study also concluded that the constructed water tank with LWACF was thermally efficient and structurally sound, as it showed no sign of seepage for the observed period.

Originality/value

On the basis of the results, it can be concluded that the LWACF used has revolutionized the concept of using lightweight aggregates in regular structures and that consequently it will help in a constructing a sustainable environment. One of the useful applications of such material is for water-retaining structures.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 February 2020

Eric Asa, Monisha Shrestha, Edmund Baffoe-Twum and Bright Awuku

Environmental issues caused by the production of Portland cement have led to it being replaced by waste materials such as fly ash, which is more economical and safer for the…

Abstract

Purpose

Environmental issues caused by the production of Portland cement have led to it being replaced by waste materials such as fly ash, which is more economical and safer for the environment. Also, fly ash is a material with sustainable properties. Therefore, this paper aims to focus on the development of sustainable construction materials using 100% high-calcium fly ash and potassium hydroxide (KOH)-based alkaline solution and study the engineering properties of the resulting fly ash-based geopolymer concrete. Laboratory tests were conducted to determine the mechanical properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In phase I of the study, carbon nanotubes (CNTs) were added to determine their effect on the strength of the geopolymer mortar. The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce similar (comparable) strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates a considerable amount of heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond was unable to form a stronger bond. This study also determined that the addition of CNTs to the mix makes the geopolymer concrete tougher than the traditional concrete without CNT.

Design/methodology/approach

Tests were conducted to determine properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In Phase I of the study, CNTs were studied to determine their effect on the strength of the geopolymer mortar.

Findings

The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce the same strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates too much heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond. This study also determined that the addition of CNTs to the mix makes the concrete tougher than concrete without CNT.

Originality/value

This study was conducted at the construction engineering and management concrete laboratory at North Dakota State University in Fargo, North Dakota. All the experiments were conducted and analyzed by the authors.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 3 December 2021

Cristina Pascual-González, Cillian Thompson, Jimena de la Vega, Nicolás Biurrun Churruca, Juan P. Fernández-Blázquez, Iker Lizarralde, Diego Herráez-Molinero, Carlos González and Javier LLorca

This paper aims to develop a novel strategy to manufacture poly-lactic acid (PLA) filaments reinforced with Mg particles for fused filament fabrication of porous scaffolds for…

Abstract

Purpose

This paper aims to develop a novel strategy to manufacture poly-lactic acid (PLA) filaments reinforced with Mg particles for fused filament fabrication of porous scaffolds for biomedical applications.

Design/methodology/approach

The mixture of PLA pellets and Mg particles was extruded twice, the second time using a precision extruder that produces a filament with zero porosity, constant diameter and homogeneous dispersion of Mg particles. The physico-chemical properties of the extruded filaments were carefully analysed to determine the influence of Mg particles on the depolymerisation of PLA during high temperature extrusion and the optimum melt flow index to ensure printability.

Findings

It was found that the addition of a polyethylene glycol (PEG) plasticizer was necessary to allow printing when the weight fraction of Mg was above 4%. It was possible to print porous face-centre cubic scaffolds with good geometrical accuracy and minimum porosity with composite filaments containing PEG.

Originality/value

The new strategy is easily scalable and seems to be very promising to manufacture biodegradable thermoplastic/metal composite filaments for 3D printing that can take advantage of the different properties of both components from the viewpoint of tissue engineering.

Article
Publication date: 16 September 2021

Marlene Kionka, Martin Odening, Jana Plogmann and Matthias Ritter

Liquidity is an important aspect of market efficiency. The purpose of this paper is threefold: first, this paper aims to discuss indicators that provide information about…

Abstract

Purpose

Liquidity is an important aspect of market efficiency. The purpose of this paper is threefold: first, this paper aims to discuss indicators that provide information about liquidity in agricultural land markets. Second, this paper aims to reflect on determinants of market liquidity and analyze the relationship with land prices. Third, this paper aims to conduct an empirical analysis for Germany that illustrates these concepts and allows hypothesis testing.

Design/methodology/approach

This study reviews liquidity dimensions and measurement in financial markets and derives indicators applicable to farmland markets. In an empirical analysis, this study exhibits the spatial and temporal variability of land market liquidity in Lower Saxony, a German federal state with the highest agricultural production value. This study uses a rich dataset that includes 72,547 sale transactions of arable land between 1990 and 2018. The research focuses on volume-based (number of transactions, volume and turnover) and time-based (trading frequency and durations) measures. A panel vector autoregression and Granger causality tests are applied to investigate the relation between land turnover and land prices.

Findings

The paper confirms the thinness of farmland markets but also reveals regional and temporal heterogeneity of land market liquidity. This study finds that the relation between market liquidity and prices is ambiguous. This study concludes that a high demand from expanding farms absorbs supply shocks regardless of the current price level in agricultural land markets.

Originality/value

Even though the relevance of agricultural land markets’ thinness is widely acknowledged in the literature, this paper is one of the first attempts to measure liquidity in agricultural land markets and to explain its relationship with land prices.

Details

Agricultural Finance Review, vol. 82 no. 4
Type: Research Article
ISSN: 0002-1466

Keywords

1 – 10 of 11