Search results

1 – 6 of 6
Article
Publication date: 31 March 2023

Huseyin Saglik, Airong Chen and Rujin Ma

Beginners and even experienced ones have difficulties in completing the structural fire analysis due to numerical difficulties such as convergence errors and singularity and have…

Abstract

Purpose

Beginners and even experienced ones have difficulties in completing the structural fire analysis due to numerical difficulties such as convergence errors and singularity and have to spend a lot of time making many repetitive changes on the model. The aim of this article is to highlight the advantages of explicit solver which can eliminate the mentioned difficulties in finite element analysis containing highly nonlinear contacts, clearance between modeled parts at the beginning and large deflections because of high temperature. This article provides important information, especially for researchers and engineers who are new to structural fire analysis.

Design/methodology/approach

The finite element method is utilized to achieve mentioned purposes. First, a comparative study is conducted between implicit and explicit solvers by using Abaqus. Then, a validation process is carried out to illustrate the explicit process by using sequentially coupled heat transfer and structural analysis.

Findings

Explicit analysis offers an easier solution than implicit analysis for modeling multi-bolted connections under high temperatures. An optimum mesh density for bolted connections is presented to reflect the realistic structural behavior. Presented explicit process with the offered mesh density is used in the validation of an experimental study on multi-bolted splice connection under ISO 834 standard fire curve. A good agreement is achieved.

Originality/value

What makes the study valuable is that the points to be considered in the structural fire analysis are examined and it is a guide that future researchers can benefit from. This is especially true for modeling and analysis of multi-bolted connections in finite element software under high temperatures. The article can help to shorten and even eliminate the iterative debugging phases, which is a problematic and very time-consuming process for many researchers.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 May 2023

Abbas Rezaeian, Mona Mansoori and Amin Khajehdezfuly

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded…

Abstract

Purpose

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded top-seat angle connections.

Design/methodology/approach

A finite element (FE) model, including nonlinear contact interactions, high-temperature properties of steel, and material and geometric nonlinearities was created for accomplishing the fire performance analysis. The FE model was verified by comparing its simulation results with test data. Using the verified model, 24 steel-framed top-seat angle connection assemblies are modeled. Parametric studies were performed employing the verified FE model to study the influence of critical factors on the performance of steel beams and their welded angle joints.

Findings

The results obtained from the parametric studies illustrate that decreasing the gap size and the top angle size and increasing the top angles thickness affect fire behavior of top-seat angle joints and decrease the beam deflection by about 16% at temperatures beyond 570 °C. Also, the fire-resistance rating of the beam with seat angle stiffener increases about 15%, compared to those with and without the web stiffener. The failure of the beam happens when the deflections become more than span/30 at temperatures beyond 576 °C. Results also show that load type, load ratio and axial stiffness levels significantly control the fire performance of the beam with top-seat angle connections in semi-rigid steel frames.

Originality/value

Development of design methodologies for these joints and connected beam in fire conditions is delayed by current building codes due to the lack of adequate understanding of fire behavior of steel beams with welded top-seat angle connections.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 January 2024

Minglang Zhang, Xue Zuo and Yuankai Zhou

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established…

Abstract

Purpose

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.

Design/methodology/approach

The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.

Findings

The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.

Originality/value

The results have a great significance to study the electrical contact behavior of conductive slip ring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2023

Xuanzhi Li, Suduo Xue, Xiongyan Li, Guanchen Liu and Renjie Liu

Instantaneous unloading with equal force is usually used to simulate the sudden failure of cables. This simulation method with equivalent force requires obtaining the magnitude…

Abstract

Purpose

Instantaneous unloading with equal force is usually used to simulate the sudden failure of cables. This simulation method with equivalent force requires obtaining the magnitude and direction of the force for the failed cable in the normal state. It is difficult, however, to determine the magnitude or direction of the equivalent force when the shape of the cable is complex (space curve). This model of equivalent force may be difficult to establish. Thus, a numerical simulation method, the instantaneous temperature rise method, was proposed to address the dynamic response caused by failures of the cables with complex structural form.

Design/methodology/approach

This method can instantly reduce the cable force to zero through the instantaneous temperature rise process of the cable. Combined with theoretical formula and finite element model, the numerical calculation principle and two key parameters (temperature rise value and temperature rise time) of this method were detailed. The validity of this approach was verified by comparing it with equivalent force models. Two cable-net case with saddle curved surfaces were presented. Their static failure behaviors were compared with the dynamic failure behaviors calculated by this method.

Findings

This simulation method can effectively address the structural dynamic response caused by cable failure and may be applied to all cable structures.

Originality/value

An instantaneous temperature rise method (ITRM) is proposed and verified. Its calculation theory is detailed. Two key parameters, temperature rise value and temperature rise time, of this method are discussed and the corresponding reference values are recommended.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 September 2023

Lang Li, Jiahui Li, Fan Zhang, Fusen Jia and Lei Li

Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive…

Abstract

Purpose

Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive analytical model for predicting the dynamic response of cellular-core sandwich structures subjected to shock loading and investigate their application in protective design.

Design/methodology/approach

First, an analytical model of a clamped sandwich beam for over-span shock loading was developed. In this model, the incident shock-wave reflection was considered, the clamped face sheets were simplified using two single-degree-of-freedom (SDOF) systems, the core was idealized using the rigid-perfectly-plastic-locking (RPPL) model in the thickness direction and simplified as an SDOF system in the span direction. The model was then evaluated using existing analytical models before being employed to design the sandwich-beam configurations for two typical engineering applications.

Findings

The model effectively predicted the dynamic response of sandwich panels, especially when the shock-loading pulse shape was considered. The optimal compressive cellular-core strength increased with increasing peak pressure and shock-loading impulse. Neglecting the core tensile strength could result in an overestimation of the optimal compressive cellular-core strength.

Originality/value

A new model was proposed and employed to optimally design clamped cellular-core sandwich-beam configurations subjected to shock loading.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 November 2023

Jonathan Núñez Aedo, Marcela A. Cruchaga and Mario A. Storti

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Abstract

Purpose

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Design/methodology/approach

A fluid–solid coupled algorithm is proposed to describe the motion of a rigid buoy under the effects of waves. The Navier–Stokes equations are solved with the open-source finite volume package Code Saturne, in which a free-surface capture technique and equations of motion for the solid are implemented. An ad hoc experiment on a laboratory scale is built. A buoy is placed into a tank partially filled with water; the tank is mounted into a shake table and subjected to controlled motion that promotes waves. The experiment allows for recording the evolution of the free surface at the control points using the ultrasonic sensors and the movement of the buoy by tracking the markers by postprocessing the recorded videos. The numerical results are validated by comparison with the experimental data.

Findings

The implemented free-surface technique, developed within the framework of the finite-volume method, is validated. The best-obtained agreement is for small amplitudes compatible with the waves evolving under deep-water conditions. Second, the algorithm proposed to describe rigid-body motion, including wave analysis, is validated. The numerical body motion and wave pattern satisfactorily matched the experimental data. The complete 3D proposed model can realistically describe buoy motions under the effects of stationary waves.

Originality/value

The novel aspects of this study encompass the implementation of a fluid–structure interaction strategy to describe rigid-body motion, including wave effects in a finite-volume context, and the reported free-surface and buoy position measurements from experiments. To the best of the authors’ knowledge, the numerical strategy, the validation of the computed results and the experimental data are all original contributions of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 6 months (6)

Content type

1 – 6 of 6