Search results

1 – 10 of 71
Open Access
Article
Publication date: 14 August 2017

Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra and Rosa Penna

This study aims to model scale effects in nano-beams under torsion.

Abstract

Purpose

This study aims to model scale effects in nano-beams under torsion.

Design/methodology/approach

The elastostatic problem of a nano-beam is formulated by a novel stress-driven nonlocal approach.

Findings

Unlike the standard strain-driven nonlocal methodology, the proposed stress-driven nonlocal model is mathematically and mechanically consistent. The contributed results are useful for the design of modern devices at nanoscale.

Originality/value

The innovative stress-driven integral nonlocal model, recently proposed in literature for inflected nano-beams, is formulated in the present submission to study size-dependent torsional behavior of nano-beams.

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 9 May 2022

Guolong Li, Mangmang Gao, Jingjing Yang, Yunlu Wang and Xueming Cao

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the…

Abstract

Purpose

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.

Design/methodology/approach

The track and substructure are decomposed into the rail subsystem and substructure subsystem, in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener. The rail is treated as a continuous beam with elastic discrete point supports, and spring-damping elements are used to simulate the constraints between rail and fastener. Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system, while the external load is used to deal with the reverse effect. The fastener failure is simulated with the methods that cancel the forced vibration transmission, namely take no account of the substructure–rail interaction at that position.

Findings

The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method. Local fastener failure will slightly affect the vibration of substructure and carbody, but it will significantly intensify the vibration response between wheel and rail. The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value, respectively, under the train speed of 350 km·h−1. At the same time, the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%, respectively, from the normal value.

Originality/value

This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 13 July 2010

Theo C. Haupt

312

Abstract

Details

Journal of Engineering, Design and Technology, vol. 8 no. 2
Type: Research Article
ISSN: 1726-0531

Content available
Book part
Publication date: 8 August 2022

Abstract

Details

Sustainable Railway Engineering and Operations
Type: Book
ISBN: 978-1-83909-589-4

Content available
Article
Publication date: 21 July 2022

Amar Messas, Karim Benyahi, Arezki Adjrad, Youcef Bouafia and Sarah Benakli

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a…

Abstract

Purpose

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a capacity ratio necessary to reach a structural plastic mechanism. To find the capacity ratio allowing to achieve a fairly ductile behavior in reinforced concrete frames, it is necessary to validate this concept by a non-linear static analysis (push-over). However, this analysis is carried out by the use of the ETABS software, and by the introduction into the beams and columns of plastic hinges according to FEMA-356 code.

Design/methodology/approach

This approach makes it possible to assess seismic performance, which facilitates the establishment of a system for detecting the plasticization mechanisms of structures. It is also necessary to use a probabilistic method allowing to treat the dimensioning by the identification of the most probable mechanisms and to take only those that contribute the most to the probability of global failure of the structural system.

Findings

In this study, three reinforced concrete frame buildings with different numbers of floors were analyzed by varying the capacity ratio of the elements. The results obtained indicate that it is strongly recommended to increase the ratio of the resistant moments of the columns on those of the beams for the Algerian seismic regulation (RPA code), knowing that the frameworks in reinforced concrete are widespread in the country.

Originality/value

The main interest of this paper is to criticize the resistance condition required by RPA code, which must be the subject of particular attention to reach a mechanism of favorable collapse. This study recommends, on the basis of a reliability analysis, the use of a capacity dimensioning ratio greater than or equal to two, making it possible to have a sufficiently low probability of failure to ensure a level of security for users.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 29 July 2022

Serena Graziosi, Federico Maria Ballo, Flavia Libonati and Sofia Senna

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors…

1493

Abstract

Purpose

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors focused on two cell topologies, the body-centred cubic (BCC) and the Kelvin, characterized by a bending-dominated behaviour relevant to the design of energy-absorbing applications.

Design/methodology/approach

The authors analysed the experimental and numerical behaviour of multiple BCC and Kelvin structures. The authors designed homogenous and graded arrays of different dimensions. The authors compared their technical feasibility with two three-dimensional-printed technologies, such as the fused filament fabrication and the selective laser sintering, choosing thermoplastic polyurethane as the base material.

Findings

The results demonstrate that multiple design aspects determine how the printing process influences the behaviour of soft lattices. Besides, a graded distribution of the material could contribute to fine-tuning this behaviour and mitigating the influence of the printing process.

Practical implications

Despite being less explored than their rigid counterpart, soft lattices are now becoming of great interest, especially when lightweight, wearable and customizable solutions are needed. This study contributes to filling this gap.

Originality/value

Only a few studies analyse design and printing issues of soft lattices due to the intrinsic complexity of printing flexible materials.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 14 April 2022

Ahmad Chihadeh and Michael Kaliske

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to…

Abstract

Purpose

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to consider the bond behavior between the reinforcement and the continuum.

Design/methodology/approach

The embedded approach is used for coupling reinforcement bars with continuum elements. This description is achieved by coupling continuum elements in the background mesh to the reinforcement bars, which are described using truss- finite elements. The coupling is implemented between the truss elements and the continuum elements in the background mesh through bond elements that allow for freely distributed truss elements independent of the continuum element discretization. The bond elements allow for modeling the bond behavior between the reinforcement and the continuum.

Findings

The paper introduces a novel method to include the reinforcement bars in the MPM applications. The reinforcement bars can be modeled without any constraints with a bond-slip constitutive model being considered.

Originality/value

As modeling of reinforced materials is required in a wide range of applications, a method to include the reinforcement into the MPM framework is required. The proposed approach allows for modeling reinforced material within MPM applications.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 7 December 2022

Milad Shabanian and Nicole Leo Braxtan

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled…

Abstract

Purpose

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled connections was investigated at ambient temperature (AT) and after and during non-standard fire exposure.

Design/methodology/approach

Three AT tests were conducted to evaluate the load-carrying capacity and failure modes of the assembly at room temperature. Two post-fire performance (PFP) tests were performed to study the impact of 30-min (PFP30) and 60-min (PFP60) partial exposure to a non-standard fire on the residual strength of the assemblies. The assemblies were exposed to fire in a custom-designed frame, then cooled and loaded to failure. A fire performance (FP) test was conducted to study the fire resistance (FR) during non-standard fire exposure by simultaneously applying fire and a mechanical load equal to 65% of the AT load carrying capacity.

Findings

At AT, embedment failure of the dowels followed by splitting failure at the Glulam-beam and tensile failure of the epoxy between the layers of CLT-walls were the dominant failure modes. In both PFP tests, the plastic bending of the dowels was the only observed failure mode. The residual strength of the assembly was reduced 14% after 30 min and 37% after 60 min of fire exposure. During the FP test, embedment failure of timber in contact with the dowels was the only major failure mode, with the maximum rate of displacement at 51 min into the fire exposure.

Originality/value

This is the first time that the thermomechanical performance of such an assembly with a full-contact connection is presented.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 14 August 2017

Venkatesh Kodur and Mohannad Z. Naser

This purpose of this paper is to quantify the effect of local instability arising from high shear loading on response of steel girders subjected to fire conditions.

1487

Abstract

Purpose

This purpose of this paper is to quantify the effect of local instability arising from high shear loading on response of steel girders subjected to fire conditions.

Design/methodology/approach

A three-dimensional nonlinear finite element model able to evaluate behavior of fire-exposed steel girders is developed. This model, is capable of predicting fire response of steel girders taking into consideration flexural, shear and deflection limit states.

Findings

Results obtained from numerical studies show that shear capacity can degrade at a higher pace than flexural capacity under certain loading scenarios, and hence, failure can result from shear effects prior to attaining failure in flexural mode.

Originality/value

The developed model is unique and provides valuable insight (and information) to the fire response of typical hot-rolled steel girder subjected to high shear loading.

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 3 October 2019

Lin Qi, Wenbo Zhang, Ronglai Sun and Fang Liu

Giant orthogonal grid barrel vault is generated by deleting members in the inessential force transfer path of the two-layer lattice barrel vault. Consisting of members in the…

1390

Abstract

Purpose

Giant orthogonal grid barrel vault is generated by deleting members in the inessential force transfer path of the two-layer lattice barrel vault. Consisting of members in the essential transfer path only, giant orthogonal grid barrel vault is a new type of structure with clear mechanical behavior and efficient material utilization. The paper aims to discuss this issue.

Design/methodology/approach

The geometrical configuration of this structure is analyzed, and the geometrical modeling method is proposed. When necessary parameters are determined, such as the structural span, length, vault rise, longitudinal and lateral giant grid number and section height to top chord length ratio of the lattice member, the structure geometrical model can be generated.

Findings

Numerical models of giant orthogonal grid barrel vaults with different rise–span ratios are built using the member model that can simulate the pre-buckling and post-buckling behavior. So the possible member buckle-straighten process and the plastic hinge form–disappear process of the structure under strong earthquake can be simulated.

Originality/value

Seismic analysis results indicate that when the structure damages under strong earthquake there are a large number of buckling members and few endpoint plastic hinges in the structure. Dynamic damage of giant orthogonal grid barrel vault under strong earthquake is caused by buckling members that weaken the structural bearing capacity.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 71