Search results

1 – 10 of over 2000
Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

113

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 February 2023

Helen Dion and Martin Evans

The issue of energy efficiency is becoming increasingly prevalent globally due to factors such as the expansion of the population, economic growth and excessive consumption that…

1210

Abstract

Purpose

The issue of energy efficiency is becoming increasingly prevalent globally due to factors such as the expansion of the population, economic growth and excessive consumption that is not sustainable in the long run. Additionally, healthcare facilities and hospitals are facing challenges as their operational costs continue to rise. The research aim is to develop strategic frameworks for managing green hospitals, towards energy efficiency and corporate governance in hospitals and healthcare facilities.

Design/methodology/approach

This research employs a qualitative case study approach, with a sample of ten hospitals examined through interviews with senior management, executives and healthcare facilities managers. Relevant data was also collected from literature and analysed through critical appraisal and content analysis. The research methodology is based on the use of grounded theory research methodologies to build theories from case studies.

Findings

The research developed three integrated conceptual strategic frameworks for managing hospitals and healthcare facilities towards energy efficiency, green hospital initiatives and corporate governance. The research also outlined the concepts of green hospitals and energy efficiency management systems and best practices based on the conclusions drawn from the investigated case studies.

Research limitations/implications

The study is limited to the initiatives and experiences of the healthcare facilities studied in the Middle East and North Africa (MENA) region.

Originality/value

The research findings, conclusions, recommendations and proposed frameworks and concepts contribute significantly to the existing body of knowledge. This research also provides recommendations for hospital managers and policymakers on how to effectively implement and manage energy efficiency initiatives in healthcare facilities.

Details

Benchmarking: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 13 February 2024

Pavankumar Sonawane, Chandrakishor Laxman Ladekar, Ganesh Annappa Badiger and Rahul Arun Deore

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing…

Abstract

Purpose

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing and analyzing serviceable cantilever fit snap connections used in automobile plastic components. Snap fits are classified into permanent and semi-permanent fittings, with permanent fittings having a snap clipping angle between 0° and 5° and semi-permanent fittings having a clipping angle between 15° and 45°. Polypropylene random copolymer is chosen for its exceptional fatigue resistance and elasticity.

Design/methodology/approach

The design process includes determining dimensions, computing assembly, disassembly pressures and creating three-dimensional computer-aided design models. Finite element analysis (FEA) is used to evaluate the snap-fit mechanism’s stress, deformation and general functionality in operational scenarios.

Findings

The study develops a modified snap-fit mechanism with decreased bending stress and enhanced mating force optimization. The maximum bending stress during assembly is 16.80 MPa, requiring a mating force of 7.58 N, while during disassembly, it is 37.3 MPa, requiring a mating force of 16.85 N. The optimized parameters significantly improve the performance and dependability of the snap-fit mechanism. The results emphasize the need of taking into account both the assembly and disassembly processes in snap-fit design, because the research demonstrates greater forces during disassembly. The approach developed integrates FEA and design for assembly (DFA) concepts to provide a solution for improving the efficiency and reliability of snap-fit connectors in automotive applications.

Originality/value

The research paper’s distinctiveness comes from the fact that it presents a thorough and realistic viewpoint on snap-fit design, emphasizes material selection, incorporates DFA principles and emphasizes the specific requirements of both assembly and disassembly operations. These discoveries may enhance the efficiency, reliability and sustainability of snap-fit connections in plastic automobile parts and beyond. In conclusion, the idea that disassembly needs to be done with a lot more force than installation in a snap-fit design can have a good effect on buzz, squeak and rattle and noise, vibration and harshness characteristics in automobiles.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2024

Hasibul Islam, Lalmi Soumia, Masud Rana, Jhansi Bharathi Madavarapu and Shimanto Saha

This study analyzed the relationship between mobile financial services (MFS) usage and customer satisfaction with MFS in Bangladesh, considering perception, purpose of use and…

Abstract

Purpose

This study analyzed the relationship between mobile financial services (MFS) usage and customer satisfaction with MFS in Bangladesh, considering perception, purpose of use and technical challenges as the primary factors influencing customer satisfaction with MFS. The aim is to determine the factors most influencing the use of MFS.

Design/methodology/approach

Data were collected from 400 MFS users through a structured web survey using snowball sampling that is consistent with the nature of MFS users who are difficult to identify or locate. Structural equation modeling (SEM) was used to analyze the data and evaluate the reliability and validity of the measurement model.

Findings

The results show that customers’ perceptions and satisfaction significantly impact their intention to use MFS. Specifically, customers’ perceptions strongly influence their satisfaction with MFS, and the purpose of use significantly predicts both perception and satisfaction. Technical problems and challenges were found to have no significant impact on satisfaction levels, but other factors were more critical. Furthermore, the integration of innovative technological solutions is crucial for fostering sustainability in MFS, as it enhances reliability and efficiency while minimizing environmental footprints.

Research limitations/implications

The study was conducted in a single country, relied on self-reported data, and used a cross-sectional design, which limits the ability to draw causal inferences. Future research could explore the factors that influence customer satisfaction with MFS in different countries and regions and incorporate additional variables to provide a more comprehensive understanding of the drivers of customer satisfaction with MFS.

Originality/value

This study significantly contributes by extending the technology acceptance model (TAM) framework with the innovation resistance theory, offering a nuanced understanding of MFS adoption. The findings challenge conventional wisdom, highlighting the limited impact of technical problems on satisfaction and emphasizing the central role of user perceptions in shaping satisfaction and intention to use.

Details

Technological Sustainability, vol. 3 no. 2
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 6 February 2024

Moslem Sheikhkhoshkar, Hind Bril El Haouzi, Alexis Aubry and Farook Hamzeh

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control…

Abstract

Purpose

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control metrics have been devised and put into practice, often with little emphasis on analyzing their underlying concepts. To cover this gap, this research aims to identify and analyze a holistic list of control metrics and their functionalities in the construction industry.

Design/methodology/approach

A multi-step analytical approach was conducted to achieve the study’s objectives. First, a holistic list of control metrics and their functionalities in the construction industry was identified. Second, a quantitative analysis based on social network analysis (SNA) was implemented to discover the most important functionalities.

Findings

The results revealed that the most important control metrics' functionalities (CMF) could differ depending on the type of metrics (lagging and leading) and levels of control. However, in general, the most significant functionalities include managing project progress and performance, evaluating the look-ahead level’s performance, measuring the reliability and stability of workflow, measuring the make-ready process, constraint management and measuring the quality of construction flow.

Originality/value

This research will assist the project team in getting a comprehensive sensemaking of planning and control systems and their functionalities to plan and control different dynamic aspects of the project.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 April 2024

Carlos Arturo Vallejo Hoyos and Flavia Braga Chinelato

This research delineates the interdependencies between e-service quality (e-SQ), product quality (PQ) and food biosafety measures (FBM) in shaping consumer satisfaction and…

Abstract

Purpose

This research delineates the interdependencies between e-service quality (e-SQ), product quality (PQ) and food biosafety measures (FBM) in shaping consumer satisfaction and loyalty within the online food delivery services (OFDS) landscape. Anchored by the technology acceptance model (TAM) and the theory of planned behavior (TPB), the study integrates these frameworks to examine how perceived service efficiency, reliability, product appeal and biosafety protocols contribute to overall consumer trust and repurchase intentions.

Design/methodology/approach

Surveys were conducted on several 100 online food delivery app users, ages 20 to 64, in major cities in Colombia, which provided data for structural equation modeling analysis.

Findings

The analysis revealed that reliable, responsive service and appealing food presentation significantly influence consumer perceptions of behind-the-scenes safety protocols during delivery. Strict standards around mitigating contamination risks and verifiable handling at each point further engender trust in the platform and intentions to repurchase among users. The data cement proper food security as pivotal for customer retention.

Practical implications

Quantitatively confirming biosafety’s rising centrality provides an impetus for platforms to integrate and promote integrity, safety and traceability protection as a competitive differentiator.

Originality/value

The study’s originality lies in its comprehensive exploration of the OFDS quality attributes and their direct impact on consumer loyalty. Besides, it offers valuable insights for both academic and practical implications in enhancing service delivery and marketing strategies.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 29 February 2024

Atefeh Hemmati, Mani Zarei and Amir Masoud Rahmani

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of…

Abstract

Purpose

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.

Design/methodology/approach

This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.

Findings

This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.

Research limitations/implications

This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.

Originality/value

This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 23 January 2024

Chinedu Onyeme and Kapila Liyanage

This study investigates the integration of Industry 4.0 (I4.0) technologies with condition-based maintenance (CBM) in upstream oil and gas (O&G) operations, focussing on…

67

Abstract

Purpose

This study investigates the integration of Industry 4.0 (I4.0) technologies with condition-based maintenance (CBM) in upstream oil and gas (O&G) operations, focussing on developing countries like Nigeria. The research identifies barriers to this integration and suggests solutions, intending to provide practical insights for improving operational efficiency in the O&G sector.

Design/methodology/approach

The study commenced with an exhaustive review of extant literature to identify existing barriers to I4.0 implementation and contextualise the study. Subsequent to this foundational step, primary data are gathered through the administration of carefully constructed questionnaires targeted at professionals specialised in maintenance within the upstream O&G sector. A semi-structured interview was also conducted to elicit more nuanced, contextual insights from these professionals. Analytically, the collected data were subjected to descriptive statistical methods for summarisation and interpretation with a measurement model to define the relationships between observed variables and latent construct. Moreover, the Relative Importance Index was utilised to systematically prioritise and rank the key barriers to I4.0 integration to CBM within the upstream O&G upstream sector.

Findings

The most ranked obstacles in integrating I4.0 technologies to the CBM strategy in the O&G industry are lack of budget and finance, limited engineering and technological resources, lack of support from executives and leaders of the organisations and lack of competence. Even though the journey of digitalisation has commenced in the O&G industry, there are limited studies in this area.

Originality/value

The study serves as both an academic cornerstone and a practical guide for the operational integration of I4.0 technologies within Nigeria's O&G upstream sector. Specifically, it provides an exhaustive analysis of the obstacles impeding effective incorporation into CBM practices. Additionally, the study contributes actionable insights for industry stakeholders to enhance overall performance and achieve key performance indices (KPIs).

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 February 2024

Evangelia Panagiotidou, Panos T. Chountalas, Anastasios Ι. Magoutas and Fotis C. Kitsios

This study aims to dissect the multifaceted impact of ISO/IEC 17025 accreditation, specifically within civil engineering testing and calibration laboratories. To achieve this, it…

Abstract

Purpose

This study aims to dissect the multifaceted impact of ISO/IEC 17025 accreditation, specifically within civil engineering testing and calibration laboratories. To achieve this, it intends to explore several key objectives: identifying the prominent benefits of accreditation to laboratory performance, understanding the advantages conferred through participation in proficiency testing schemes, assessing the role of accreditation in enhancing laboratory competitiveness, examining the primary challenges encountered during the accreditation process, investigating any discernible adverse effects of accreditation on laboratory performance and evaluating whether the financial cost of accreditation justifies the resultant profitability.

Design/methodology/approach

This study employs a qualitative approach through semi-structured interviews with 23 industry professionals—including technical managers, quality managers, external auditors and clients. Thematic analysis, guided by Braun and Clarke’s six-stage paradigm, was utilized to interpret the data, ensuring a comprehensive understanding of the accreditation’s impact.

Findings

Findings reveal that accreditation significantly enhances operational processes, fosters quality awareness and facilitates continuous improvement, contributing to greater client satisfaction. In addition, standardized operations and rigorous quality controls further result in enhanced performance metrics, such as staff capability and measurement accuracy. However, the study also uncovers the challenges of accreditation, including high resource costs and bureaucratic hurdles that can inhibit innovation and slow routine operations. Importantly, the research underscores that the impact of accreditation on profitability is not universal, but contingent upon various factors like sector-specific regulations and market demand. The study also highlights sector-specific variations in the role of accreditation as a marketing tool and differing perceptions of its value among clients. It further emphasizes the psychological stress of high-stakes evaluations during audits.

Originality/value

This study represents the first in-depth investigation into the impact of ISO/IEC 17025 accreditation on civil engineering testing and calibration laboratories, directly contributing to the enhancement of their quality and operational standards. Providing actionable insights for laboratories, it underscores the importance of weighing accreditation costs and benefits and the necessity for a tailored approach to the unique market and regulatory landscapes they operate in.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 27 September 2023

Ibtissem Alguirat, Fatma Lehyani and Alaeddine Zouari

Lean management tools are becoming increasingly applied in different types of organizations around the world. These tools have shown their significant contribution to improving…

164

Abstract

Purpose

Lean management tools are becoming increasingly applied in different types of organizations around the world. These tools have shown their significant contribution to improving business performance. In this vein, the purpose of this paper is to examine the influence of lean management on both occupational safety and operational excellence in Tunisian companies.

Design/methodology/approach

A survey was conducted among Tunisian companies, and it resulted in the collection of 62 responses that were analyzed using the software SPSS. In addition, a conceptual model linking the practices of the three basic concepts was designed to highlight the hypotheses of the research. Subsequently, factor analysis and structural equation method analysis were conducted to assess the validation of the assumptions.

Findings

The results obtained have shown that lean management has a significant impact on occupational safety. Similarly, occupational safety has a significant impact on operational excellence. However, lean management does not have a significant impact on operational excellence.

Originality/value

This work highlighted the involvement of small and medium-sized enterprise’s managers from emerging economies in the studied concepts’ practices. Likewise, it testified to the impacts of lean management on occupational safety and operational excellence in the Tunisian context.

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 10 of over 2000