Search results

1 – 10 of over 6000
Article
Publication date: 8 January 2018

Ye Zhou, Degong Chang and Songmei Li

This paper aims to improve the grease thermal elastohydrodynamic lubrication (TEHL) properties of the tripod sliding universal coupling (TSUC) under automotive practical…

Abstract

Purpose

This paper aims to improve the grease thermal elastohydrodynamic lubrication (TEHL) properties of the tripod sliding universal coupling (TSUC) under automotive practical conditions. For this purpose, the effect of effective radius was theoretically investigated.

Design/methodology/approach

Based on the simplified geometric model, the effect of effective radius on the pressure distribution, film thickness and temperature distribution of the TSUC was theoretically investigated using the multigrid and stepping methods. The TEHL properties were compared with the results obtained using the isothermal calculation method.

Findings

The results show that the thermal effect has a great impact on the film thickness and the pressure distribution of grease lubrication properties. Moreover, larger effective radius results in a wider but lower pressure distribution, a wider and thicker lubricating film and a lower temperature distribution.

Originality/value

The TSUC can be widely used in the front drive automotive transmission because it can transmit larger torque than before. The effect of effective radius on the thermal grease lubrication properties under automotive practical conditions provides a new direction for designing it.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2017

Ye Zhou, Degong Chang and Songmei Li

This paper aims to investigate the grease isothermal lubrication properties of the tripod sliding universal coupling (TSUC) in automotive transmission shaft and study its impact…

Abstract

Purpose

This paper aims to investigate the grease isothermal lubrication properties of the tripod sliding universal coupling (TSUC) in automotive transmission shaft and study its impact on a variety of factors to improve its grease lubrication properties.

Design/methodology/approach

Based on the simplified geometrical model, the research of grease lubrication properties of the TSUC was analyzed, and compared with oil lubrication in same parameters. Then the effects of effective radius, frequency (vehicle speed) and amplitude (angle between intermediate shaft and input shaft) on grease isothermal lubrication properties are theoretically investigated by using multigrid methods.

Findings

The results indicate that the grease isothermal elastohydrodynamic lubrication (EHL) film thickness shape and pressure distribution shape of the TSUC are similar to the oil lubrication, but the film thickness of grease lubrication is less than that of oil lubrication. Higher effective radius results in a wider pressure distribution, a lower center pressure and a thicker lubricating film. Higher frequency (vehicle speed) results in a remarkable second pressure peak and a thicker lubricating film. The effects of amplitude (angle between intermediate shaft and input shaft) and frequency have similar tendencies.

Originality/value

The numerical analysis research on grease lubrication properties of the TSUC is significant because the automotive transmission shaft is widely used. And it provides a new direction in designing TSUCs.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 2019

Yogesh Mahulkar and Chetankumar Sedani

Miniature loop heat pipes (MLHPs) are highly efficient passive heat transfer devices, which have considerable advantages over conventional heat pipes. Currently, miniature LHPs…

Abstract

Purpose

Miniature loop heat pipes (MLHPs) are highly efficient passive heat transfer devices, which have considerable advantages over conventional heat pipes. Currently, miniature LHPs with ammonia and water as working fluids have been developed and utilized in electronics cooling within temperature range of 50°C-70°C at any orientation in 1-g conditions.

Design/methodology/approach

The authors studied the standard procedure for the development of bi-porous nickel wicks and their characterization. Three different shaped nickel powders were studied, and best fitting nickel powder for electronics cooling application was reported. The manufacturing of bi-porous wick structures was analyzed with parameters such as porosity, permeability, capillary pressure and effective thermal conductivity for efficient performance of MLHP.

Findings

The study investigated the sintering process for number of samples to identify effective sample for the particular application. It is found that carbonyl nickel powder (type 287) with particle size of 2.6-3.3 µm gives promising results. Permeability and porosity were found to be highest in this case.

Originality/value

It is found that carbonyl nickel powder type with particle size gives promising results. Permeability and porosity was found to be highest in this case.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 July 2019

Seyedamin Jarolmasjed, Behnam Davoodi and Babak Pourebrahim Alamdari

The purpose of this paper is to machine the pressure surface of the turbine blade made of A286 iron-based superalloy by using four directions of raster strategy, including…

Abstract

Purpose

The purpose of this paper is to machine the pressure surface of the turbine blade made of A286 iron-based superalloy by using four directions of raster strategy, including horizontal upward, horizontal downward, vertical upward and vertical downward, to achieve appropriate surface roughness and to investigate the tool wear in each strategy.

Design/methodology/approach

In this study, all cutting tests were performed by DAHLIH-MCV 1020 BA vertical 3-axis machining center with ball nose end mill. After milling by each strategy, according to the surface slope, the surface was divided into 27 meshes, and roughness of surface was studied and compared. Roughness measuring after machining was implemented by using portable Mahr ps1 roughness tester, and surface texture was photographed by CCD 100× optical zoom camera. Also, to measure tool flank wear in each strategy as an indication of tool life, the surface of workpiece was divided into four equal areas. The wear of the inserts was measured by ARCS vertical non-contact measuring system at the end of each area.

Findings

The results indicate that cutting directions and toolpath strategies have significant influence on tool wear and surface roughness in machining processes and that they can be taken into consideration individually as determinative parameters. In this case, the most uniform surface texture and the lowest surface roughness are obtained by using horizontal downward direction; in addition, abrasion is a dominant tool wear mechanism in all experiments, and tool wear in the horizontal downward is lower than other strategies.

Practical implications

Machining of turbine blades or other airfoil-shaped workpieces is quite common in manufacturing aerospace and aircraft products. The results of this research contribute to increasing quality of machined surface and tool life in machining of turbine blade.

Originality/value

This work proves the significance of milling strategies in machining of the turbine blade made of A286 superalloy and, consequently, exhibits the proper strategy in terms of surface roughness and tool life. Also, this work explains and elaborates the behavior of A286 superalloy in machining processes, which has not been studied much in recent research works.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 November 2021

Xingxing Fang, Dahan Li, Yucheng Xin, Songquan Wang, Yongbo Guo, Ningning Hu and Dekun Zhang

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait…

Abstract

Purpose

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait cycle.

Design/methodology/approach

In this paper, four common femoral head-on-acetabular cup contact pairs are used as the research objects, mathematical calculations and finite element simulations are adopted. The contact model of hip joint head and acetabular cup was established by finite element simulation to analyze the stress and temperature distribution of the contact interface.

Findings

The results show that the contact stress of the head-on-cup interface is inversely proportional to the contact area; high contact stress directly leads to greater frictional heat. However, hip joints with metal-on-polyethylene or ceramic-on-polyethylene paired interfaces have lower frictional heat and show a significant temperature rise in one gait cycle, which may be related to the material properties of the acetabular cup.

Originality/value

Previous studies about calculating the interface frictional heat always ignore the dynamic change process in the contact load and the contact area. This study considered the dynamic changes of the contact stress and area of the femoral head-on-acetabular cup interface, and four common contact pairs were systematically analyzed.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 1957

J.P. Jones

THE problem of calculating the motion of a helicopter blade presents many difficulties. Probably the most serious is the lack of knowledge of the aerodynamic forces acting on a…

Abstract

THE problem of calculating the motion of a helicopter blade presents many difficulties. Probably the most serious is the lack of knowledge of the aerodynamic forces acting on a blade, but a second major difficulty arises when the equations of motion have to be solved. The first and second harmonics may be readily obtained, but the higher harmonics can only be calculated at the expense of considerable effort. This is especially true if the effects of elasticity and varying tip‐speed ratio are taken into account.

Details

Aircraft Engineering and Aerospace Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 29 May 2009

V.K. Gupta, Vijay Kumar and S. Ray

The purpose of this paper is to investigate the effect of imposing linear and quadratic composition gradients on the steady state creep behavior of a rotating functionally graded…

Abstract

Purpose

The purpose of this paper is to investigate the effect of imposing linear and quadratic composition gradients on the steady state creep behavior of a rotating functionally graded Al‐SiCP disc operating under a radial thermal gradient.

Design/methodology/approach

Mathematical model to describe steady state creep behavior in rotating discs made of isotropic aluminum composite containing linear and quadratic distributions of Silicon Carbide (SiCP) in the radial direction has been formulated. The discs are assumed to operate under a radial thermal gradient originating due to braking action as estimated by FEM analysis. The steady state creep behavior of the discs under stresses developing due to rotation has been determined following Sherby's law. Based on the developed model, the distributions of stresses and strain rates have been obtained and compared for various functionally graded material (FGM) discs containing the same average amount (20 vol per cent) of dispersoid. The creep response of a composite disc with uniform SiCP content of 20 vol per cent and operating under a radial thermal gradient has also been computed for comparison with the results obtained for FGM discs.

Findings

The study reveals that the distribution of stresses and strain rates in a rotating composite disc operating under a radial thermal gradient are significantly affected by different particle distributions with in the disc. The creep stresses and steady state creep rates in a rotating FGM disc can be significantly reduced by employing more SiCP particles in the middle compared to the inner and the outer radii.

Originality/value

The study provides an understanding of the required tailoring of composition in order to control creep stresses and creep rates in a rotating FGM disc operating under a radial thermal gradient.

Details

Engineering Computations, vol. 26 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 April 2014

Mark A. Hopkins

– The purpose of this paper is to present a new and efficient technique for discrete element modelling using non-convex polyhedral grain shapes.

Abstract

Purpose

The purpose of this paper is to present a new and efficient technique for discrete element modelling using non-convex polyhedral grain shapes.

Design/methodology/approach

The efficiency of the technique follows from the use of grains that are dilated versions of the basic polyhedral grain shapes. Dilation of an arbitrary polyhedral grain is accomplished by placing the center of a sphere of fixed radius at every point on the surface. The dilated vertices become sphere segments and the edges become cylinder segments. The sharpness of the vertices and edges can be adjusted by varying the dilation radius. Contacts between two dilated polyhedral grains can be grouped into three categories; vertex on surface, vertex on edge, and edge on edge, or in the grammar of the model, sphere on polygonal surface, sphere on cylinder, and cylinder on cylinder. Simple, closed-form solutions exist for each of these cases.

Findings

The speed of the proposed polyhedral discrete element model is compared to similar models using spherical and ellipsoidal grains. The polyhedral code is found to run about 40 percent as fast as an equivalent code using spherical grains and about 80 percent as fast as an equivalent code using ellipsoidal grains. Finally, several applications of the polyhedral model are illustrated.

Originality/value

Few examples of discrete element modeling studies in the literature use polyhedral grains. This dearth is because of the perceived complexity of the polyhedral coding challenges and the slow speed of the codes compared to codes for other grain shapes. This paper presents a much simpler approach to discrete element modeling using polyhedral grain shapes.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2018

Dong Guan, Harry H. Hilton, Zhengwei Yang, Li Jing and Kuan Lu

This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.

Abstract

Purpose

This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.

Design/methodology/approach

A ball-on-plane configuration is adopted to represent the contact model between spherical piston and cylinder cover. The governing equations, which include the Reynolds and elasticity equations, are solved and validated by Jin–Dowson model. Both minimum film thickness and lambda ratio (ratio of minimum fluid film thickness to combined surface roughness of the piston and cylinder cover) of the equivalent model are obtained using an established model.

Findings

The results indicate that piston diameter and radial clearance are the two main factors affecting the pump lubrication regime. Other related parameters such as rotation speed of the piston, load, viscosity of working medium, material matching and surface roughness of piston and cylinder cover also have different impacts on the lubrication regime of the spherical pump.

Originality/value

These results emphasize the importance of the design and manufacturing parameters on the tribological performance of spherical pumps and these are also helpful in improving the spherical pump lubrication regime and enlarging its life cycle. This is to certify that to the best of the authors’ knowledge, the content of this manuscript is their own work. This manuscript has only been submitted to this journal and never been published elsewhere. The authors certify that the intellectual content of this manuscript is the product of their own work and that all the assistance received in preparing this manuscript and sources has been acknowledged.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 November 2019

Royal Madan, Kashinath Saha and Shubhankar Bhowmick

The limit elastic speed of rotating disk is an important design criterion, as it defines the limit before onset of yielding initiates. The purpose of this paper is to establish…

Abstract

Purpose

The limit elastic speed of rotating disk is an important design criterion, as it defines the limit before onset of yielding initiates. The purpose of this paper is to establish the limit elastic speeds for S-FG disks and report the stresses induced at such speeds.

Design/methodology/approach

For S-FGM disk, effective Young’s modulus is calculated using modified rule of mixture and subsequently effective yield stress is also calculated by taking into consideration of stress-strain transfer ratio. The S-FGM disk is subject to centrifugal loading and the stress and deformation characteristics are investigated using variational principle wherein the solution is obtained by Galerkin’s error minimization principle. Based on von-Mises yield criteria, equivalent stress is calculated at different angular speeds till the equivalent stress at any given location in the disk attains the value of effective yield stress at the given location (location of yield initiation). This defines the limit elastic speed for the S-FGM disk (for given n).

Findings

The limit elastic speed of S-FGM disks for a range of grading index (n) and corresponding stresses within the disk are reported. Results are reported for uniform disks of different aspect ratio and the results reported could be used as practical design data.

Practical implications

Functional grading of material in structures opens a new horizon to explore the possibility of manufacturing high strength component at low weight. Material grading plays a significant role in achieving desired material properties, and literature review reveals reporting of numerous grading functions to approximate material distribution in structure.

Originality/value

The work has not been addressed earlier and findings provide a pioneering insight into the performance of S-FG disks.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 6000