Search results

1 – 10 of over 51000
Article
Publication date: 4 June 2021

Sıtkı Akıncıoğlu

The purpose of this study was to optimize the surface roughness (Ra), delamination damage at the hole entrance (FdT) and at the hole exit (FdB) and kerf angle (K) in the drilling…

Abstract

Purpose

The purpose of this study was to optimize the surface roughness (Ra), delamination damage at the hole entrance (FdT) and at the hole exit (FdB) and kerf angle (K) in the drilling of aramid fiber-reinforced polymer (AFRP) composite material using abrasive water jet (AWJ) machining.

Design/methodology/approach

The AFRP composite was produced by the vacuum infusion method. The drilling experiments were performed on an AWJ machine using a three-axis computerized numerical control system. Machine processing parameters were determined as water pressure (2,000, 3,000 and 4,000 bar), stand-off distance (2, 4 and 6 mm) and traverse feed rate (150, 250 and 350 mm/min). Optimization of processing parameters in the drilling experiments was carried out according to the Taguchi L27 (33) orthogonal array. In addition, gray relational analysis (GRA) was used to analyze the complex uncertainty affecting the results.

Findings

Results of the drilling operations demonstrated that water pressure (P) was the most effective parameter, with 65.3%, 65.2%, 49.8% and 52.1% contribution rates for Ra, FdT, FdB and K, respectively.

Practical implications

Reliable results have been obtained with Taguchi-based GRA while drilling AFRP composite material using AWJ. Significant results have been achieved to increase the hole quality in the drilling of AFRP composite material.

Originality/value

The new approach is to present more detailed analysis by using Taguchi method and multi-decision Taguchi-based gray relation analysis in AFRP composite material drilling using AWJ. Thus, time and experiment costs are saved.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 April 2019

Philipp Kölsch

The surface temperature of the sub-roof beneath the ventilation layer and the tiles is one of the most important factors for the hygrothermal performance of pitched roofs. The air…

103

Abstract

Purpose

The surface temperature of the sub-roof beneath the ventilation layer and the tiles is one of the most important factors for the hygrothermal performance of pitched roofs. The air layer between tiles and sub-roof and the air exchange with the outdoor air influence the heat transfer and therefore affect the moisture level inside the roof construction. The paper aims to discuss these issues.

Design/methodology/approach

This paper provides the results of a research project performed at Fraunhofer-Institute for Building Physics, based on field test results. The investigations analyze the thermal behavior of different vented and ventilated roof constructions.

Findings

It was found that for a detailed model with roof cladding and ventilated air layer normally too many parameters are unknown. For that reason a simplified approach was set up, especially to consider the radiation exchange between the tiles and the underlay as well as the effects of the ventilation.

Originality/value

Now, effective surface transfer parameters can substitute both cladding and air layer in the simulation, while the approach still provides a high accordance with the measured values. The paper provides characteristic values for different roofing situations to simulate ventilated roofs by means of hygrothermal simulation in a simplified way.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 September 2017

Kamel Milani Shirvan, Mojtaba Mamourian and R. Ellahi

The purpose of this paper is to study the optimal conditions of the mixed convection in a ventilated square cavity filled with Cu-water nanofluid using the Taguchi method. The…

Abstract

Purpose

The purpose of this paper is to study the optimal conditions of the mixed convection in a ventilated square cavity filled with Cu-water nanofluid using the Taguchi method. The paper aims to discuss diverse issues affecting the said model.

Design/methodology/approach

The numerical solutions of nonlinear coupled equations are developed by means of the Taguchi method. The Taguchi method is used as an effective way to optimize the design process engineering tests.

Findings

The governing equations are discretized using a finite volume method and solved with semi-implicit method for pressure linked equations (SIMPLE) algorithm. The effect of Richardson number (0.01-10), the volume fraction of nanofluid (0-5 per cent), distance of inlet port position from bottom wall of the cavity (0-0.9 H) and distance of outlet port position from top wall of the cavity (0-0.9 H) as effective parameters are analyzed across four levels. This analysis is done for fixed Grashof number 104. The results show that the mean Nusselt number almost decreases by an increase in the Richardson number, volume fraction of nanofluid, position of the inlet port and position of the outlet port. It is found that the cavity with distance of inlet port position from bottom wall of the cavity 0 and distance of outlet port position from upper wall of the cavity 0.9 H at the Richardson number 0.01 and the volume fraction 3 per cent is the optimal design for heat transfer.

Originality/value

As far as the authors know, this model has been investigated for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2018

Mustafa Soylak, Nurseda Karagöz Gökçe and Eyüp Sabri Topal

The purpose of this paper is to determine the impact level of parameters affecting wing design at low speeds using Taguchi method.

Abstract

Purpose

The purpose of this paper is to determine the impact level of parameters affecting wing design at low speeds using Taguchi method.

Design/methodology/approach

Using brain storming approach airfoil shape, wing angle of attack and Reynolds number are determined as important wing design parameters. Most important parameters over these parameters are determined using Taguchi method. The lift-to-drag ratio (CL/CD ratio) is chosen as the performance criterion and L8 orthogonal index is chosen as experimental study scheme for this study.

Findings

Experimental results are examined using Taguchi method. After making experiments and also analyses, Reynolds number is found as the most important and identifier parameter for aircraft wing design.

Practical implications

Taguchi method makes the experimental design for experimental studies. This method reduces the number of experiments substantially using orthogonal indices while keeping effects of uncontrolled parameters to a minimum. Reduction in number of experiments helps save time and also cost.

Originality/value

In this study, with less number of experiments, the most important parameter for aircraft wing design is determined. Moreover, with less number of experiments, not only is time saved but the design stage is also made faster.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 June 2012

Abdolrahim Rezaeiha and Tony Schönherr

The purpose of this paper is to comprehensively review most of the significant works ever done worldwide to study the effects of essential parameters on pulsed plasma thruster…

Abstract

Purpose

The purpose of this paper is to comprehensively review most of the significant works ever done worldwide to study the effects of essential parameters on pulsed plasma thruster (PPT) performance and to analyze the effects of each parameter on PPT performance.

Design/methodology/approach

All the important works studying PPT performance are categorized by the parameter they have studied and its effect on the thruster performance, and their works have been reviewed to analyze the influence of each parameter.

Findings

The analysis leads to elucidation of the effects of different geometrical parameters including aspect ratio, electrode width, electrode spacing, electrode shape, electrode length, and flare angle, in addition to the effects of other parameters such as electrode material, propellant type, propellant temperature, spark distance from propellant, pulse repetition frequency, discharge energy, capacitance, and hood angle on PPT performance.

Research limitations/implications

The analysis is mainly focused on parallel‐rail breech‐fed PPTs and side‐fed PPTs and does not deal with co‐axial PPTs.

Originality/value

The paper reviews and analyses many of the considerable works ever done to contribute to clarify the effects of different parameters on PPT performance. The results of the current analysis can be of invaluable assistance in PPT design and optimization procedure and help the designer to develop a system with better performance characteristics.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 January 2024

Seyfe Nigussie Adamu, Temesgen Wondimu Aure and Tesfaye Alemu Mohammed

From the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective…

Abstract

Purpose

From the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective length-to-depth (leff/d) ratio on shear strength of RC slender beams.

Design/methodology/approach

The researchers utilized a database of 676 experimental test results from ACI-DAfStb database, Conducted regression analysis to examine relationship between b/d and leff/d ratios and shear strength, compare and analyze sensitivity to changes in b/d and leff/d ratios for the selected 12 shear models for RC beams.

Findings

Increasing b/d ratio enhanced shear strength until b/d ˜ 3, but further increases had limited impact and increasing leff/d ratio resulted in decreased shear strength. From comparative analysis, the models provided by various design standards were found to be safe, with EC-2 and JSCE models being conservative. From considered research models, Campione and Arslan models were conservative, while Kim and White model were observed to be unsafe. Sensitivity analysis indicated ACI318-19, JSCE, CEB-FIP-90 and Arslan models were sensitive to changes in b/d and leff/d ratios. National code models generally captured shear strength characteristics well. Certain models suggested a constant/decreasing b/d effect despite observed shear strength enhancement. Most models indicated improved shear strength with an increasing leff/d ratio, contrary to experimental findings while TS500 and Hwang models aligned with experimental results.

Research limitations/implications

The study's limitations include the dependence on the available database, which may not encompass all possible experimental scenarios. Further research should aim to expand the database and investigate additional parameters that may influence shear strength in RC beams.

Practical implications

The findings of this study have practical implications for the design and analysis of RC beams by suggesting that the width-to-depth and length-to-depth ratios should be carefully considered to optimize shear strength. The identified models can assist engineers in selecting appropriate shear strength prediction models based on specific design scenarios.

Social implications

The study contributes to the advancement of knowledge in the field of reinforced concrete beam design, which has implications for the safety and reliability of structural systems. By understanding the factors influencing shear strength, engineers can design more efficient and robust structures, ensuring the safety of buildings and infrastructure.

Originality/value

This study provides valuable insights into the influence of the width-to-depth and effective length-to-depth ratios on shear strength in reinforced concrete beams. It contributes to the understanding of these factors and their impact on shear strength, addressing the lack of consensus among researchers. The comparative analysis of shear models and the sensitivity analyses add value by identifying the models that align better with experimental observations. The study emphasizes the need for accurate models that account for these factors and highlights the importance of further research to refine and develop improved predictive models.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 March 2018

Fuat Kara and Burak Öztürk

This paper aims to examine the performance of the machining parameters used in the hard-turning process of DIN 1.2738 mold steel and identify the optimum machining conditions.

Abstract

Purpose

This paper aims to examine the performance of the machining parameters used in the hard-turning process of DIN 1.2738 mold steel and identify the optimum machining conditions.

Design/methodology/approach

Experiments were carried out via the Taguchi L18 orthogonal array. The evaluation of the experimental results was based on the signal/noise ratio. The effect levels of the control factors on the surface roughness and flank wear were specified with analysis of variance performed. Two different multiple regression analyses (linear and quadratic) were conducted for the experimental results. A higher correlation coefficient (R2) was obtained with the quadratic regression model, which showed values of 0.97 and 0.95 for Ra and Vb, respectively.

Findings

The experimental results indicated that generally better results were obtained with the TiAlN-coated tools, in respect to both surface roughness and flank wear. The Taguchi analysis found the optimum results for surface roughness to be with the cutting tools of coated carbide using physical vapor deposition (PVD), a cutting speed of 160 m/min and a feed rate of 0.1 mm/rev, and for flank wear, with cutting tools of coated carbide using PVD, a cutting speed of 80 m/min and a feed rate of 0.1 mm/rev. The results of calculations and confirmation tests for Ra were 0.595 and 0.570 µm, respectively, and for the Vb, 0.0244 and 0.0256 mm, respectively. Developed quadratic regression models demonstrated a very good relationship.

Originality/value

Optimal parameters for both Ra and Vb were obtained with the TiAlN-coated tool using PVD. Finally, confirmation tests were performed and showed that the optimization had been successfully implemented.

Details

Sensor Review, vol. 39 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 April 2009

Faruq Al‐Omari, Mohammad Al‐Jarrah, Mohammad Omari and Mohammed Hayajneh

The purpose of this paper is to study the effect of the height and diameter of the dies as well as work‐piece dimensions, on stresses and strains on dies in the forging process…

Abstract

Purpose

The purpose of this paper is to study the effect of the height and diameter of the dies as well as work‐piece dimensions, on stresses and strains on dies in the forging process. This helps in developing a better understanding of the effect of process parameters. As a result, the manufacturing task could be accomplished with minimal number of trials.

Design/methodology/approach

After determining the most influencing parameters on the forging process, the mechanical part is drawn, size of initial billet and shape of punch and die are also determined to build a finite‐element model to represent the process. Several outputs are taken as an indication for die wear and process performance. Finally, a computer numerical control (CNC) code to manufacture the selected die is generated.

Findings

It was found that when the die diameter increases, the effective stress decreases. On other hand, it was found that the work required to finish the forging process is highly affected by the dimensions of work‐piece. Therefore, it is possible to save power if work‐piece dimensions are adjusted.

Originality/value

This paper was meant to be a universal step or guide in developing a computer aided design/computer aided manufacturing (CAD/CAM) system to design, simulate, and manufacture molds for the forging process using a statistical method.

Details

Engineering Computations, vol. 26 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2013

Mehmet Ermurat, Mehmet Ali Arslan, Fehmi Erzincanli and Ibrahim Uzman

This paper aims to investigate the effect of four important process parameters (i.e. laser focal distance, travel speed, feeding gas flow rate and standoff distance) on the size…

Abstract

Purpose

This paper aims to investigate the effect of four important process parameters (i.e. laser focal distance, travel speed, feeding gas flow rate and standoff distance) on the size of single clad geometry created by coaxial nozzle-based powder deposition by high power laser.

Design/methodology/approach

Design of experiments (DOE) and statistical analysis methods were both used to find optimum parameter combinations to get minimum sized clad, i.e. clad width and clad height. Factorial experiment arrays were used to design parameter combinations for creating experimental runs. Taguchi optimization methodology was used to find out optimum parameter levels to get minimum sized clad geometry. Response surface method was used to investigate the nonlinearity among parameters and variance analysis was used to assess the effectiveness level of each problem parameters.

Findings

The overall results show that wisely selected four problem parameters have the most prominent effects on the final clad geometry. Generally, minimum clad size was achieved at higher levels of gas flow rate, travel speed and standoff distance and at minimum spot size level of the laser focal distance.

Originality/value

This study presents considerable contributions in assessing the importance level of problems parameters on the optimum single clad geometry created laser-assisted direct metal part fabrication method. This procedure is somewhat complicated in understanding the effects of the selected problem parameters on the outcome. Therefore, DOE methodologies are utilized so that this operation can be better modeled/understood and automated for real life applications. The study also gives future direction for research based on the presented results.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 August 2011

Oleg Rybin, Konstantin Yemelyanov and Tahira Nawaz

The purpose of this paper is to obtain the long‐wave approximations for the effective electromagnetic response of two‐dimensional sandwich composite structure, as infinite chain…

Abstract

Purpose

The purpose of this paper is to obtain the long‐wave approximations for the effective electromagnetic response of two‐dimensional sandwich composite structure, as infinite chain of infinitely long metal cylinders symmetrically immersed in an infinite metamaterial slab are obtained. The slab is an infinite magneto‐dielectric matrix with periodically imbedded infinitely long metal cylinders whose diameter is smaller than those of the chain cylinders. The case of ferrite‐like metallic saturated inclusions is considered in the study.

Design/methodology/approach

The result is presented as a generalized expression of the electromagnetic response of the infinite periodic chain of infinitely long metallic cylinders immersed into the flat magneto‐dielectric host medium. Those expressions were obtained utilizing S‐ and T‐matrices approaches.

Findings

A good coincidence between the results of analytical modeling and numerical simulations was found.

Research limitations/implications

Low values of the metal volume fraction; microwave frequency range.

Practical implications

An improving of directivity of patch antennas; a minimization of patch antennas.

Originality/value

The analytical characterization of new artificial substrate‐like structure to be utilized for designing patch antennas of a new generation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 51000