Search results

1 – 10 of 111
Article
Publication date: 8 August 2019

Samuel Ayofemi Olalekan Adeyeye

Fishes are important sources of good and high-quality protein in developing countries. Spoilage and keeping quality of fish especially in the tropics is temperature dependence as…

Abstract

Purpose

Fishes are important sources of good and high-quality protein in developing countries. Spoilage and keeping quality of fish especially in the tropics is temperature dependence as high temperature and relative humidity accelerate the process of spoilage and fish keeping quality. Fish dehydration removed moisture and extended the shelf life of dried fish. Drying involves removal of moisture from fish as a result of heat and mass transfer done under controlled conditions. This study delves into various drying techniques and drying kinetics of fish.

Design/methodology/approach

The review examines fish drying kinetics and the various drying models applicable to fish drying.

Findings

This review showed that moisture content and colour of dried fish are affected by time and power level. It was also found that the moisture content of the dried fish varied according to the drying method used. Also, as drying power and drying rate varied inversely with drying time. Eight different thin layer drying models were examined for evaluation of drying data for all the experimental conditions involving fish drying. It was found that the quality of the dried fish decreased with drying. Higher values of effective moisture diffusivity have been found to increase moisture velocity within fish samples which improve removal of moisture to reach equilibrium moisture content at specified relative humidity. However, based on this, effective moisture diffusivity could be a useful parameter to design an effective drying method in terms of time, energy consumption and cost to prolong the storage life of dried fish samples. Drying kinetics and different drying models were considered and explained. The use of these models was considered to be important in choosing appropriate drying conditions for effective drying and to get good quality dried fish samples.

Research limitations/implications

The review considers few available literatures on the subject matter.

Practical implications

The review explores the possibility of creating more awareness for more in-depth research on fish drying kinetics and their usefulness in fish preservation.

Originality/value

This outcome of this study is important to researchers, policymakers and regulatory agencies in developing countries on fish preservation.

Details

Nutrition & Food Science, vol. 49 no. 5
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 31 August 2021

Osman İsmail and Özlem Gökçe Kocabay

The aim of this work was to study the effect of the different temperatures on drying kinetics and quality parameters of vacuum oven-dried mediterranean or black mussel (Mytilus

Abstract

Purpose

The aim of this work was to study the effect of the different temperatures on drying kinetics and quality parameters of vacuum oven-dried mediterranean or black mussel (Mytilus galloprovincialis) specimens.

Design/methodology/approach

Drying process was performed at 50, 60 and 70 °C and a vacuum drying pressure of 0.1 kPa. The proximate composition analysis was done. Drying rates of the mussels were computed. Mathematical modeling was carried out. Effective moisture diffusivity, activation energy and total energy consumption were calculated. Color measurement was conducted.

Findings

Drying took place entirely in the falling rate period. The obtained results indicated that the drying air temperature has a remarkable influence on the moisture content and drying rate. Drying resulted in a significant increasing of protein and fat content. The Deff values ranged from 1.44 × 10−9–3.23 × 10−9 m2/s, with the activation energy 4.47 kW kg−1. The Alibas model is the most proper model to define the drying curves. This method provided high energy efficiency and quality in dried products.

Research limitations/implications

Fresh mussels grown in Eceabat location were used as the study sample. In the drying process, 50, 60, 70 °C temperatures and 0.1 kPa pressure was used. These are the limitations of the research.

Originality/value

This work is the first to report the influence of vacuum oven drying on the color changes and drying kinetics of black mussels.

Details

British Food Journal, vol. 124 no. 4
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 4 February 2014

Hamed Saberian, Mojtaba Amooi and Zohreh Hamidi-Esfahani

The aim of the present research was to study and model drying of loquat fruit under vacuum conditions at three temperatures to select the best mathematical model for predicting…

Abstract

Purpose

The aim of the present research was to study and model drying of loquat fruit under vacuum conditions at three temperatures to select the best mathematical model for predicting drying rate of loquat during times which is used in designing of vacuum dryer. The dried product may be used in the preparation of soups, jam, premixed foods, snacks, etc.

Design/methodology/approach

Loquat samples were dried by vacuum oven (52 cm Hg) at three temperatures, 60, 70 and 80°C. First, moisture content was plotted against time for each treatment and after that moisture ratio curves were plotted. These curves were fitted with nine well-known models to select the best model.

Findings

Regression analysis of different models and values of RMSE and χ2 showed that page model had the best fitness due to highest R2 and lowest RMSE and χ2. Moisture diffusivity of loquat samples at 60, 70 and 80°C was calculated to be 6.87×10−10, 9.17×10−10 and 1.29×10−9 m2/s, respectively, which increased with temperature.

Originality/value

This paper is believed to be the only one which investigates and models drying loquat under vacuum conditions to select the best mathematical model for predicting drying rate of loquat.

Details

Nutrition & Food Science, vol. 44 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 15 June 2022

Mounir Kouhila, Younes Bahammou, Hamza Lamsyehe, Zakaria Tagnamas, Haytem Moussaoui, Ali Idlimam and Abdelkader Lamharrar

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of…

Abstract

Purpose

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of temperature and humidity on the microstructure of earth mortar using static gravimetric method.

Design/methodology/approach

A convective solar dryer was used for the pretreatment of building and solid materials for construction.

Findings

The humidity influences the mortar sorption – surface water sorption of earth mortar increased with increasing temperature.

Originality/value

The study used a novel method for pretreatment building materials by using solar dryer.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 January 2021

Younes Bahammou, Mounir Kouhila, Haytem Moussaoui, Hamza Lamsyehe, Zakaria Tagnamas, Abdelkader Lamharrar and Ali Idlimam

This work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics…

Abstract

Purpose

This work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.

Design/methodology/approach

Thermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.

Findings

The models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.

Originality/value

Evaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 6 March 2017

Zbigniew Bulinski and Helcio R.B. Orlande

This paper aims to present development and application of the Bayesian inverse approach for retrieving parameters of non-linear diffusion coefficient based on the integral…

Abstract

Purpose

This paper aims to present development and application of the Bayesian inverse approach for retrieving parameters of non-linear diffusion coefficient based on the integral information.

Design/methodology/approach

The Bayes formula was used to construct posterior distribution of the unknown parameters of non-linear diffusion coefficient. The resulting aposteriori distribution of sought parameters was integrated using Markov Chain Monte Carlo method to obtain expected values of estimated diffusivity parameters as well as their confidence intervals. Unsteady non-linear diffusion equation was discretised with the Global Radial Basis Function Collocation method and solved in time using Crank–Nicholson technique.

Findings

A number of manufactured analytical solutions of the non-linear diffusion problem was used to verify accuracy of the developed inverse approach. Reasonably good agreement, even for highly correlated parameters, was obtained. Therefore, the technique was used to compute concentration dependent diffusion coefficient of water in paper.

Originality/value

An original inverse technique, which couples efficiently meshless solution of the diffusion problem with the Bayesian inverse methodology, is presented in the paper. This methodology was extensively verified and applied to the real-life problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1986

M.P. Seah, F.H. Howie and C. Lea

This is the third paper in the series of eight, studying voids and blowholes in PTH printed circuit boards. In the previous papers the industrial significance of this problem has…

Abstract

This is the third paper in the series of eight, studying voids and blowholes in PTH printed circuit boards. In the previous papers the industrial significance of this problem has been established and moisture identified as the primary cause of the gassing. Now, particular attention is focused on the understanding of the mechanisms and kinetics of moisture uptake in the FR‐4 laminate. From the authors' data the rate of moisture uptake and the rate of drying of laminate can be predicted as a function of temperature and relative humidity.

Details

Circuit World, vol. 12 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 11 November 2021

Joan Carlos Alves Pereira, Wilton Pereira da Silva, Renato Costa da Silva, Cleide Maria Diniz P.S. e Silva and Josivanda Palmeira Gomes

To describe water absorption by the rice grains over time, diffusion and empirical models were used. Also, an optimization software was developed in this study to determine…

Abstract

Purpose

To describe water absorption by the rice grains over time, diffusion and empirical models were used. Also, an optimization software was developed in this study to determine parameters and their uncertainties for the diffusion models (LS Optimizer, for partial differential equations). Parameters (and their uncertainties) for empirical models were determined by LAB Fit Curve Fitting Software.

Design/methodology/approach

Heat and mass diffusion phenomena are found in various processes of technological interest, including pasteurization, drying and water immersion of agricultural products, among others. The objective of this work was to study the process of water absorption by rice grains with and without husk, using diffusion and empirical models to describe the absorption kinetics. Rice grains were immersed (approximately 10 g for each experiment) in drinking water maintained at constant temperatures of 28, 40 and 50 C. In the experiments, the water contents absorbed by rice grains over time were obtained by the gravimetric method.

Findings

Among empirical models, Peleg was the most satisfactory to describe the kinetics of water absorption by rice without husk, while the Silva et alii model had the best statistical indicators for rice with husk. It was also verified that a diffusion model with boundary condition of the first kind showed the best (or equivalent) results in the description of all processes of kinetics of water absorption by rice grains, with and without husk. For grains without husk, the effective mass diffusivities were (1.186 ± 0.045) × 10−9, (1.312 ± 0.024) × 10−9 and (2.133 ± 0.028) × 10−9 m2 min−1, for the immersion temperatures of 28, 40 and 50C, respectively. For grains with husk, diffusivities were (0.675 ± 0.011) × 10−9 and (1.269 ± 0.017) × 10−9 m2 min−1, for temperatures of 28 and 50 C, respectively.

Originality/value

This work developed a solver for the diffusion equation in cylindrical geometry and presented the LS Optimizer software developed to determine differential equation parameters through experimental data sets.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 August 2021

B. Norerama D. Pagukuman and M. Kamel Wan Ibrahim

The purpose of this paper is to present and discuss the external factors of the solar dryer design that influenced the thermal efficiency of the solar dryer that contribute to the…

Abstract

Purpose

The purpose of this paper is to present and discuss the external factors of the solar dryer design that influenced the thermal efficiency of the solar dryer that contribute to the better quality of dried food products.

Design/methodology/approach

From the reviewed works of literature, the external factors including the drying temperature, airflow rate and relative humidity have significant effects to increase the rate of moisture diffusivity of the freshly harvested products during the drying process. The proper controls of airflow rate (Q), velocity (V), relative humidity (RH%) and drying temperature (°C) can influence the dried product quality. The dehydration ratio is the procedure to measure the quality of the dried food product.

Findings

The indirect solar dryer including the mixed-mode, hybrid and integrated was found shorter in drying time and energy-intensive compared to sun drying and direct drying. The recommended drying temperature is from 35.5°C to 70°C with 1–2 m/s velocity and 20%–60% relative humidity. The optimum thermal efficiency can be reached by additional devices, including solar collectors and solar accumulators. It gives a simultaneous effect and elongated the drying temperature 8%–10% higher than ambient temperature with 34%–40% energy saving. The recommended airflow rate for drying is 0.1204 to 0.0894 kg/s. Meanwhile, an airflow rate at 0.035–0.04 kg/m2 is recommended for an optimum drying kinetic performance.

Research limitations/implications

This paper discusses the influence of the external factors of the solar dryer design on the thermal performance of the solar dryer and final dried food products quality. Therefore, the findings cannot serve as a statistical generalization but should instead be viewed as the quantitative validation subjected to fundamentals of the solar dryer design process and qualitative observation of the dried food product quality.

Practical implications

A well-designed of solar dryer with low operating and initial fabrication cost, which is simple to operate is useful for the farmers to preserve surplus harvested crops to an acceptable and marketable foods product. The optimization of the external and internal factors can contribute to solar dryer thermal performance that later provides an organoleptic drying condition that results in good quality of dried product and better drying process. The recommended drying temperature for a drying method is between 35°C up to 70°C. Drying at 65.56°C was effective to kill microorganisms. Meanwhile, drying at 50°C consider as average drying temperature. The recommended airflow rate for drying is 0.1204 to 0.0894 kg/s. Meanwhile, air flowrate at 0.035–0.04 kg/m2 is recommended for optimum drying kinetic performance. The recommended value of aspect ratio and mass flow rate is 200 to 300 for an optimum evaporation rate. The good quality of dried products and good performance of solar dryers can be developed by proper control of airflow rate (Q), velocity (V), relative humidity (RH%) and drying temperature (°C).

Social implications

The proper control of the drying temperature, relative humidity and airflow rate during the drying process will influence the final dried food products in terms of shape, color, aroma, texture, rupture and nutritious value. It is crucial to control the drying parameters because over-drying caused an increment of energy cost and reduces the dry matter. The quick-drying will disturb the chemical process during fermentation to be completed.

Originality/value

This study identifies the potential of the solar drying method for dehydrating agricultural produces for later use with the organoleptic drying process. The organoleptic drying process can reduce mold growth by promising an effective diffusion of moisture from freshly harvested products. The research paper gives useful understandings that well-designed solar drying technology gives a significant effect on dried product quality.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 9 August 2011

Anna‐Lena Ljung, T. Staffan Lundström and Kent Tano

The purpose of this paper is to numerically model convective drying of a two‐dimensional iron ore pellet subjected to turbulent flow.

Abstract

Purpose

The purpose of this paper is to numerically model convective drying of a two‐dimensional iron ore pellet subjected to turbulent flow.

Design/methodology/approach

Simulations of the iron ore pellet drying process are carried out with commercial computational fluid dynamics software. The moisture distribution inside the pellet is calculated from a diffusion equation and drying due to evaporation at the surface is taken into account.

Findings

The results show an initial warm up phase with a succeeding constant rate drying period. Constant drying rate will only be achieved if the surface temperature is constant. The falling rate period will subsequently start at the forward stagnation point when the minimum moisture content is reached, while other parts of the surface still provide enough moisture to allow surface evaporation. The phases will thus coexist for a period of time.

Research limitations/implications

Owing to the complex physical processes involved in iron ore pellet drying, some parameters in the model are based on estimations. The effective diffusivity should, for example, in the future be investigated more thoroughly. It is also important to extend the model so that the falling rate drying period is also included. The model is at present undergoing further validation.

Practical implications

The simulations can provide detailed information on some key fluid dynamics and physical processes that an iron ore pellet undergoes during drying.

Originality/value

The simulations enhance the understanding of iron ore pellet drying and the model provides a complement to experimental investigations when optimizing the drying process.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 111