Search results

1 – 10 of 390
Article
Publication date: 5 March 2018

Kyriakos I. Kourousis and Anthony Comer

This viewpoint aims to increase the awareness on the demand faced by the technical sector of the Indian and Chinese aviation industry and how this can be met by the adoption of…

Abstract

Purpose

This viewpoint aims to increase the awareness on the demand faced by the technical sector of the Indian and Chinese aviation industry and how this can be met by the adoption of the European Aviation Safety Agency (EASA) regulatory framework.

Design/methodology/approach

A brief overview of the challenges that the Indian and the Chinese aviation industry is facing is provided, in terms of meeting the demand for sustainable growth. A description of the structure of the EASA framework and its main characteristics is presented, along with a focussed discussion on the framework’s applicability to the Indian and the Chinese aviation maintenance and broader continuing airworthiness sector.

Findings

The EASA regulatory framework can offer a safe and business-effective solution for the Indian and the Chinese aviation industry, aligning with world’s best practice.

Practical implications

A discussion in adopting the EASA framework in India and China can be helpful in increasing awareness and assisting decision makers realise that this is a possible option.

Originality/value

This viewpoint can be useful in provoking discussion, by summarising the key issues and points surrounding aviation regulation standardisation in India and China, along the lines of the EASA framework. Moreover, some possible ways to increase awareness around EASA in India and China are discussed from the point of view of influencing tomorrow’s decision makers.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Oliver Hirling and Florian Holzapfel

The purpose of this paper is to discuss European Aviation Safety Agency’s (EASA’s) Prototype Regulation on Unmanned Aircraft Operation and introduce the tool Operational Risk…

Abstract

Purpose

The purpose of this paper is to discuss European Aviation Safety Agency’s (EASA’s) Prototype Regulation on Unmanned Aircraft Operation and introduce the tool Operational Risk Considerations for Unmanned Aircraft Systems (O.R.C.U.S.). In contrast to existing airworthiness regulations for civil manned aircraft, EASA’s approach is focussed on flight operations and not aircraft, a significant change for the domain of civil airworthiness.

Design/methodology/approach

O.R.C.U.S. is a software risk analysis tool developed by the corresponding author. It encompasses all relevant factors for flight operations of light Unmanned Aircraft Systems (UAS) above populated areas in Germany. The tool generates predictions of possible fatalities in the event of a light Unmanned Aircraft crash through the use of validated statistics and considering the time and location of a mission. An example mission, including a discussion of the results, is provided to demonstrate and discuss the capabilities of O.R.C.U.S.

Findings

EASA’s Prototype Regulation on Unmanned Aircraft Operation makes a sound risk assessment of UAS flight operations indispensable. O.R.C.U.S. is able to increase risk awareness for operators and airworthiness authorities even if only less to none information about the UAS is available, supporting the possible approval of such an operation.

Originality/value

In this paper, O.R.C.U.S. is presented for the first time. O.R.C.U.S. can provide risk estimations for UAS operations in Germany, even if only minimum information about the UAS is available. In contrast to other tools, O.R.C.U.S. offers a unique risk prediction by combining aspects of the flying Unmanned Aircraft as well as the overflown area.

Details

International Journal of Intelligent Unmanned Systems, vol. 5 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component…

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 September 2018

Kyriakos I. Kourousis, Anna V. Chatzi and Ioannis K. Giannopoulos

The Airbus A320 family engine fan cowl doors (FCDs) safety issue is known to the industry for almost 18 years; however, it has not been addressed adequately by the aircraft…

Abstract

Purpose

The Airbus A320 family engine fan cowl doors (FCDs) safety issue is known to the industry for almost 18 years; however, it has not been addressed adequately by the aircraft manufacturer and the various operators and regulating authorities. The purpose of this paper is to examine in a systematic way the possible operational and safety implications of a new modification on the engine FCDs.

Design/methodology/approach

An array of error-prone scenarios is presented and analysed under the prism of human factors in a non-exhaustive qualitative scenario analysis.

Findings

All examined scenarios are considered more or less probable. A number of accident prevention solutions are proposed for each of the scenario examined, in view of the acceptance and implementation of this modification by operators.

Research limitations/implications

As these scenarios are neither exhaustive nor have been tested/validated in actual aircraft maintenance practice, the further analysis is necessary. A substantial follow-up survey should take place, which should include a wider array of scenarios. This would allow obtaining the necessary data for a quantitative (statistical) analysis.

Practical implications

This case study identifies issues in relation to this modification, introduced by Airbus and the European Aviation Safety Agency (EASA), which may prove problematic from the point of view of safety effectiveness and disruption of operations.

Originality/value

This case study examines a long-standing aviation safety issue and the implications of a solution proposed by the aircraft manufacturer and adopted by EASA. This can be useful in increasing the awareness around these issues and highlight the importance of a human-centric and scenario-based design of engineering modifications towards minimising error in aircraft technical operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 2005

Oliver Gray

Examines how self‐regulation in advertising, within a framework of legislation, can help reverse the trends toward childhood obesity and excessive consumerism by protecting…

1524

Abstract

Examines how self‐regulation in advertising, within a framework of legislation, can help reverse the trends toward childhood obesity and excessive consumerism by protecting children from undesirable advertising practices. Outlines how this works in Europe: a code of advertising practice is created, based on the codes of the International Chamber of Commerce, and a self‐regulatory organisation (SRO) is formed to operate this, with the European Advertising Standards Alliance (EASA) providing a single voice for self‐regulation. Describes how SROs actually enforce the codes by giving advice, handling complaints, monitoring advertising in their markets, and referring serious cases of abuse to the appropriate legal authority. Assesses how well the system is working: the number of complaints being handled is small in proportion to the total number of advertisements, and those concerning food and children form a small portion of the total number of complaints, but there is room for improvement. Shows how the 2004 EASA Self‐Regulation Charter makes specific commitments to cover any gaps in existing coverage. Concludes with five ways that marketers can help effective self‐regulation: keep to the spirit of the codes, educate your staff, use SRO advice on copy and other aspects, review complaints and monitor results, and challenge incorrect claims.

Details

Young Consumers, vol. 6 no. 4
Type: Research Article
ISSN: 1747-3616

Keywords

Content available
Article
Publication date: 22 May 2007

92

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 3
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 15 May 2009

77

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 24 March 2022

Melih Yildiz

The purpose of this paper is to analyze the electric propulsion use in civil aviation and propose a framework for certification of electric propulsion subsystems. Although…

Abstract

Purpose

The purpose of this paper is to analyze the electric propulsion use in civil aviation and propose a framework for certification of electric propulsion subsystems. Although electric propulsion architectures are discussed as key technology for the future of aviation, the industry standards as well as regulations fail to cover the application in full extent, specifically for commercial large airplanes. This paper proposes an approach for the analyses of reliability and certification of the new-generation propulsion system by pointing out the “common structure” among the possible architectures.

Design/methodology/approach

The research process used in this paper consists of following steps: the challenges of the hybrid-electric propulsion is listed, the architectures of the hybrid-electric applications in the literature are identified, the differences of the hybrid architectures from the present applications by means of application and standardization are discovered, the architectures are analyzed and the two main subsystems are defined – the present combustion system and the common unit, which is a similar structure used in all-electric aircraft. For this purpose, the standards used for design basis and certification of the present propulsion system and their relationship with the subsystems of the architectures have been analyzed. The procedure for the reliability assessment of the system is given, a framework for the safety assessment and the certification of the propulsion systems is proposed to make it easier and without sacrificing the already accumulated experience. This study shows that by using the common unit, the present certification framework can be used, by focusing on the reliability of the common unit and its integration with the rest of the architecture.

Findings

A specific definition of common unit is proposed, to point out the difference in certification efforts of hybrid-electric propulsion architectures. Yet, there is no data available for propulsion-level airborne battery and electrical systems to assess the reliability. Thus, dividing the propulsion system into two main systems and providing a model for certification of the common unit sub-system would be beneficial for easy deployment of the hybrid architectures both for design and for certification. In this paper, it is proposed that by using this common unit, the present certification framework can be used as it is, by focusing on the reliability of the common unit and its integration with the rest of the architecture.

Practical implications

The aircraft certification regulations act in two ways: they provide a starting point for new design projects, and they are a basis for certification of the final system. This study aims to draw focus on certification issues on the new-generation hybrid-electric propulsion systems. With the introduction of hybrid-electric propulsion for large aircraft, the present standards (CS-25, CS-E, CS-P, CS-Battery and CS-APU) create an obstacle for further progress as their borders get into each other. Instead of developing a new set of standard(s), this paper proposes a new approach by dividing the propulsion system into two subsystems.

Originality/value

This research proposes a definition of “common unit” for simplification of the hybrid-electric propulsion architectures for large civil aircraft. The common unit consists of both battery and electrical components and their reliability shall be considered for hybrid-electric propulsion.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 1999

HASHEM AL‐TABTABAI and ALEX P. ALEX

Genetic algorithm (GA) is a model of machine learning. The algorithm can be used to find sub‐optimum, if not optimum, solution(s) to a particular problem. It explores the solution…

Abstract

Genetic algorithm (GA) is a model of machine learning. The algorithm can be used to find sub‐optimum, if not optimum, solution(s) to a particular problem. It explores the solution space in an intelligent manner to evolve better solutions. The algorithm does not need any specific programming efforts but requires encoding the solution as strings of parameters. The field of application of genetic algorithms has increased dramatically in the last few years. A large variety of possible GA application tools now exist for non‐computer specialists. Complicated problems in a specific optimization domain can be tackled effectively with a very modest knowledge of the theory behind genetic algorithms. This paper reviews the technique briefly and applies it to solve some of the optimization problems addressed in construction management literature. The lessons learned from the application of GA to these problems are discussed. The result of this review is an indication of how the GA can contribute in solving construction‐related optimization problems. A summary of general guidelines to develop solutions using this optimization technique concludes the paper.

Details

Engineering, Construction and Architectural Management, vol. 6 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 21 October 2019

Sveinn Vidar Gudmundsson

European air transport policy, emerged through the confluence of case law and legislation, in four broad areas: liberalization, safety and security, greening, and the external…

Abstract

European air transport policy, emerged through the confluence of case law and legislation, in four broad areas: liberalization, safety and security, greening, and the external policy. Following the implementation of the single market for air transport, policy shifted to liberalizing and regulating associated services and in recent years to greening, the external aviation policy, and safety and security. Inclusion of air transport in the Environmental Trading Scheme of the European Union exemplifies the European Commission’s proactive stand on bringing the industry in line with emission reduction trajectories of other industries. However, the bid to include flights to third countries in the trading scheme pushed the EU into a controversial position, causing the Commission to halt implementation and to give ICAO time to seek a global multilateral agreement. The chapter also discusses how the nationality clauses in air services agreements breached the Treaty of Rome, and a court ruling to that effect enabled the EC to extend EU liberalization policies beyond the European Union, resulting in the Common Aviation Area with EU fringe countries and the Open Aviation Area with the USA. Another important area of progress was aviation safety, where the EU region is unsurpassed in the world, yet the Commission has pushed the boundary even further, by establishing the European Safety Agency to oversee the European Aviation Safety Management System. Another important area of regulatory development was aviation security, a major focus after the woeful events in 2001, but increasingly under industry scrutiny on costs and effectiveness. The chapter concludes by arguing that in the coming decade, the EU will strive to strengthen its position as a global countervailing power, symbolized in air transport by a leadership position in environmental policy and international market liberalization, exemplified in the EU’s external aviation policy.

Details

Airline Economics in Europe
Type: Book
ISBN: 978-1-78973-282-5

Keywords

1 – 10 of 390