Search results

1 – 10 of 18
Article
Publication date: 13 April 2022

Ming Liu

The purpose of this study is to analysis the pitting corrosion on the mechanical behavior of E690 high-strength steel sandwich panel. The pitting corrosion depth and degree of…

Abstract

Purpose

The purpose of this study is to analysis the pitting corrosion on the mechanical behavior of E690 high-strength steel sandwich panel. The pitting corrosion depth and degree of pitting (DOP) damage were used to evaluate the mechanical behaviors such as peak load and specific energy absorption of E690 panel.

Design/methodology/approach

The mechanical behavior of quasi-static compression, low-speed impact and three-point bending of E690 panel after pitting corrosion was simulated by ABAQUS nonlinear finite element method.

Findings

The quasi-static compression and low-speed impact mechanical properties can be greatly reduced by the pitting corrosion of the panel core, the pitting corrosion of the outer panel shows no obvious effect. The mechanical properties decrease with the increase of the pitting corrosion depth and DOP, and the influence of DOP is greater than that of pitting corrosion depth. The DOP of outer panel has less effect on mechanical properties of three-point bending compared with that of the core. Therefore, the pitting corrosion in the core of panel should be strictly controlled to prevent adverse effects on the mechanical properties of the structure.

Originality/value

To make up for the deficiency of the research on the corrosion behavior of high-strength steel sandwich panel structure, this paper chose E690 high-strength steel panel as the research object, and nonlinear finite element method was adopted to simulate the influence of pitting corrosion coverage area and pitting depth on its mechanical property degradation. The quasi-static compression, low-speed impact and three-point bending mechanical properties of panel with various DOPs and pitting depths were systematic studied.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 May 2023

Wenlong Cai, Yongkang Zhang and Jianhang Liu

The purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the…

Abstract

Purpose

The purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the mechanical properties.

Design/methodology/approach

Taking E690 marine steel as the research object, the experiment adopts a new process method of laser forging coupled arc welding. Welding for comparative experiments. Experiments show that the “V”-shaped groove arc welding process has a larger fusion area, but has pores, the arc current is 168 A, the arc voltage is 28 V and the welding speed is 600 mm/min.

Findings

It can be seen from tensile tests that the coupling welding process has the highest tensile strength and yield strength, 872 MPa and 692 MPa, respectively, and the fracture elongation is 29.29%. The single-beam laser forging coupled arc welding process has a distance of laser and wire of 6–8 mm, a laser wavelength of 1,064 nm and the highest weld fusion ratio. The microhardness test shows that the average hardness of single-beam laser forging in the weld zone is 487.54 HV, which is 10.30% higher than that of arc welding. The average hardness in the fusion zone is 788.08 HV, which is 14.52% higher than that of the arc welding process.

Originality/value

The originality of the experiment: proposed a new process method of coupling arc repair for offshore steel forging; adopted a new process method of simultaneous coupling of single-beam short-pulse laser, double-beam short-pulse laser and arc welding; and obtained effect of pulsed laser and arc composite repair on porosity and fusion of E690 marine steel welds.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 July 2021

Xiaoguang Sun, Xuexu Xu, Zihan Wang and Zhiyong Liu

The purpose of this paper is to determine the corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint.

Abstract

Purpose

The purpose of this paper is to determine the corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint.

Design/methodology/approach

Electron back-scattered diffraction (EBSD) were adopted to characterize the microstructure of 6005A aluminum alloy and welded joint. Through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and corrosion fatigue experiments, the corrosion fatigue behavior and mechanism of 6005A aluminum alloy base metal and welded joint were studied.

Findings

The results show that the corrosion fatigue crack initiation of 6005A aluminum alloy base metal and welded joint is mainly caused by the preferential anodic dissolution and hydrogen concentration in the areas with inclusions and welding defects.

Originality/value

The research is an originality study on the corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Book part
Publication date: 10 June 2019

Mareike Riedel

The religious tradition of male circumcision has come increasingly under attack across a number of European states. While critics of the practice argue that the problem is about…

Abstract

The religious tradition of male circumcision has come increasingly under attack across a number of European states. While critics of the practice argue that the problem is about children’s rights and the proper relationship between secular and religious traditions, Jews tend to see these attacks within the longer history of attempts to assimilate and remake them according to the norms of the majority. Using the 2012 German legal controversy concerning the issue as my vantage point, I explore how contemporary criticism of male circumcision remains entangled with ambivalence toward Judaism and the Jews as the “other.” Through a close reading of the arguments, I show how opponents use the seemingly neutral language of universal human rights to (re)make Jewish difference according to the norms of the majority. I conclude by arguing that such an approach to this issue runs the risk of turning Jews once again into strangers at a time when cultural anxieties are troubling European societies.

Details

Studies in Law, Politics, and Society
Type: Book
ISBN: 978-1-78973-727-1

Keywords

Article
Publication date: 27 July 2023

Li Fan and Biao Nie

This paper aims to investigate the evolution law of surface characteristic of corroded cold-formed thin-walled steel in industrial environments.

Abstract

Purpose

This paper aims to investigate the evolution law of surface characteristic of corroded cold-formed thin-walled steel in industrial environments.

Design/methodology/approach

Five test specimens sourced from cold-formed thin-walled C-shaped steel that have been in service for three years in actual industrial environments were subjected to surface characteristic test. The surface characteristic of corroded hot-rolled steel and cold-formed steel were compared and analyzed. The relationship between the surface morphology parameters and the average corrosion depth was established.

Findings

The evolution law of the surface morphology of corroded cold-formed thin-walled steel and corroded hot-rolled steel was similar. The frequency histogram of corrosion depth was mainly single peak with high values on the middle and low values on both sides. The corrosion depth conformed to the normal distribution. The roughness average height and the root mean square of surface height gradually increased linearly with increasing the average corrosion depth.

Originality/value

The reduction in the standard deviation of corrosion depth, the maximum corrosion depth, the roughness average height and the root mean square of surface height of the cold-formed thin-walled steel was smaller than those of the hot-rolled steel.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 July 2020

Longfei Song, Zhiyong Liu, Lin Lu, Xiaogang Li, BaoZhuang Sun and Huanlin Cheng

This paper aims to analyze a failure case of a P110 tube in a CO2 flooding well.

Abstract

Purpose

This paper aims to analyze a failure case of a P110 tube in a CO2 flooding well.

Design/methodology/approach

The chemical composition, microstructure and mechanical properties of the failed P110 tubing steel were tested, and met the API Spec 5CT standard. The fractures were investigated by scanning electron microscopy and energy dispersive spectroscopy.

Findings

Fracture was induced by stress corrosion cracking (SCC) and that the stress concentration caused by the mechanical damage played an important role in the failure. The failure case is a SCC failure affected by mechanical damage and galvanic corrosion.

Originality/value

The effect of the infiltration of groundwater was studied in the failure case. The stress concentration caused by the mechanical damage played an important role in the failure.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 February 2021

Ying Yang, Wei Wu, Xuequn Cheng, Jinbin Zhao, Baijie Zhaoal and Xiaogang Li

This study aims to develops a new-type low-alloy corrosion resistant steel containing Sb and investigate the corrosion mechanism of this new-type low-alloy steel.

Abstract

Purpose

This study aims to develops a new-type low-alloy corrosion resistant steel containing Sb and investigate the corrosion mechanism of this new-type low-alloy steel.

Design/methodology/approach

Energy dispersive spectrometer, X-ray photoelectron spectroscopy, X-Ray diffraction and scanning electron microscopy were used to evaluate the corrosion resistance of the rust layers formed on these samples. Laser confocal microscopy was used to observe the corroded surfaces of the steels.

Findings

Results showed that Sb added can consume H+ in the solution, thereby preventing the oxygen reaction to slow down the corrosion rate. Meanwhile, a stable and insoluble substance (Sb2O3) in the acidic solution would be produced when the reaction of the product of Sb and H+ with the enough dissolved oxygen in the solution. Due to the precipitation of Sb2O3 and iron oxyhydroxides, the rust layer of Sb-containing steel became more uniform and compact, which resulted in better corrosion resistance in acid environment.

Originality/value

In this study, a new-type acid resistant low-alloy steel containing Sb was developed. Compared with the results, the corrosion mechanism of the new-type low-alloy steel in acid environment was discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 June 2021

Shixiong Wu, Zhiming Gao, Da-Hai Xia, Meijun Wu, Yingjie Liu and Wenbin Hu

This paper aims to study the effect of temperature on the process and kinetic parameters of the hydrogen evolution reaction of X80 under cathodic protection (CP) in 3.5% NaCl…

Abstract

Purpose

This paper aims to study the effect of temperature on the process and kinetic parameters of the hydrogen evolution reaction of X80 under cathodic protection (CP) in 3.5% NaCl solution.

Design/methodology/approach

Potentiodynamic polarization combined with the hydrogen permeation test is used to analyze the hydrogen evolution reaction (HER) process and the rate-determining step for which is diagnosed through the electrochemical impedance spectrum method. Then, the influence of temperature on kinetic parameters of HER can be known from the results obtained by using the Iver-Pickering-Zamenzadeh model for data analysis.

Findings

The results show that the HER proceeds through Volmer–Tafel route with the Volmer reaction acting as the rate-controlling step; Increasing temperature gives a higher activity of the HER on X80, it also accelerates the hydrogen desorption and diffusion of hydrogen into the metal.

Originality/value

There exist few studies on the topic of how temperature affects the HER process. It is imperative to conduct a relevant study to give some instruction in cathodic protection system design and this paper fulfills this need.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 March 2021

Wei Zhang, Hongqun Liu, Minglei Hu and Wei Wu

This paper aims to make clear the sensitive zone of subsea pipeline to stress corrosion cracking (SCC) under a disbonded coating.

Abstract

Purpose

This paper aims to make clear the sensitive zone of subsea pipeline to stress corrosion cracking (SCC) under a disbonded coating.

Design/methodology/approach

The change of microenvironment under a disbonded coating in artificial seawater was analyzed by using a rectangular crevice cell. The SCC behavior of subsea pipeline was studied by slow strain rate tensile tests.

Findings

The microenvironment at the crevice bottom exhibits obvious acidification, Cl- aggregation and cathodic protection potential (CP) rise. Accordingly, the susceptibility of X70 steels to SCC is high due to the intensive anodic dissolution effect. At the opening, hydrogen atom can access into the steel and induce hydrogen embrittlement effect on account of the applied over-protected CP potential, resulting in a relatively high susceptibility to SCC. The corrosiveness of the microenvironment at crevice middle, however, is mild with proper CP potential; thus, the susceptibility of X70 steel to SCC here is lower than that obtained at the opening and the crevice bottom.

Originality/value

A rectangular crevice cell is built to survey the microenvironment evolution under a disbonded coating in situ. The sensitive zone of subsea pipeline to SCC under a disbonded coating is clarified.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2022

Yun Bai, Baozhuang Sun, Wenzhu Huangfu, Xianjin Sun, Zhiyong Liu, Cuiwei Du and Xiaogang Li

The purpose of this paper was to study the relationship between safe storage life and storage mode of hot-rolled sheet (Q235, X70) in humid environment, and a prediction model of…

Abstract

Purpose

The purpose of this paper was to study the relationship between safe storage life and storage mode of hot-rolled sheet (Q235, X70) in humid environment, and a prediction model of safe storage life under different storage modes was established.

Design/methodology/approach

The corrosion behavior of hot-rolled sheets under different storage conditions was studied with immersion experiment and morphology observation.

Findings

The results show that pitting occurs on the hot-rolled sheets in humid environment, and the corrosion behavior is strongly related with the storage mode. When they are stored separately, the number and depth of pits first increase and then decrease as the Cl concentration rises, while for the stack storage, pit depth increases with increasing Cl concentration. The safe storage time of separate storage is longer than that of stack storage. Based on this, a model of chloride ion concentration and storage life was established.

Originality/value

A storage safe life model of hot-rolled sheet in humid environment is proposed.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 18