Search results

1 – 5 of 5
Article
Publication date: 17 April 2023

Uchenna Luvia Ezeamaku, Innocent Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Okechukwu Dominic Onukwuli and Ikechukwu Abuchi Nnanwube

The purpose of this study is to investigate starch mucor (SM) in potassium iodide (KI) as corrosion inhibitor of aluminium in hydrochloric acid (HCl) medium.

Abstract

Purpose

The purpose of this study is to investigate starch mucor (SM) in potassium iodide (KI) as corrosion inhibitor of aluminium in hydrochloric acid (HCl) medium.

Design/methodology/approach

The SM in KI was characterized by gravimetric, scanning electron microscopy, electrochemical impedance spectroscopy measurements, potentiodynamic polarization and gas chromatography-mass spectrometer techniques. The inhibition efficiency was optimized using response surface methodology.

Findings

The result revealed that the inhibitor inhibited corrosion at a low concentration with the rate of inhibition increasing as the concentration of the inhibitor increased. The inhibition efficiency increases as the temperature was increased with slight incorporation of the inhibitor (SM in KI). This indicates that the corrosion control is both inhibitor (SM in KI) and temperature dependent.

Originality/value

The research results can provide the basis for using SM in KI as corrosion inhibitor of aluminium in HCL medium. Mixed-type inhibitor nature of SM was proved by cathodic and anodic nature of the polarization curves.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 June 2023

Wilfred Emori, Paul C. Okonkwo, Hitler Louis, Ling Liu, Ernest C. Agwamba, Tomsmith Unimuke, Peter Okafor, Atowon D. Atowon, Anthony Ikechukwu Obike and ChunRu Cheng

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable…

Abstract

Purpose

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable, cheap, and efficient options. In consideration of these facts, chrysin, a phytocompound of Populus tomentosa (Chinese white poplar) has been isolated and investigated for its anticorrosion abilities on carbon steel in a mixed acid and chloride system. This highlights the main purpose of the study.

Design/methodology/approach

Chrysin was isolated from Populus tomentosa using column chromatography and characterized using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The investigations are outlined based on theory (Fukui indices, condensed density functional theory and molecular dynamic simulation) and experiments (electrochemical, gravimetry and surface morphology examinations).

Findings

Theoretical evaluations permitted the description of the adsorption characteristics, and molecular interactions and orientations of chrysin on Fe substrate. The interaction energy for protonated and neutral chrysin on Fe (110) were −149.10 kcal/mol and −143.28 kcal/mol, respectively. Moreover, experimental investigations showed that chrysin is a potent mixed-type corrosion inhibitor for steel, whose effectiveness depends on its surrounding temperature and concentration. The optimum inhibition efficiency of 78.7% after 24 h for 1 g/L chrysin at 298 K indicates that the performance of chrysin, as a pure compound, compares favorably with other phytocompounds and plant extracts investigated under similar conditions. However, the inhibition efficiency decreased to 62.5% and 51.8% at 318 K after 48 h and 72 h, respectively.

Originality/value

The novelty of this study relies on the usage of a pure compound in corrosion suppression investigation, thus eliminating the unknown influences obtainable by the presence of multi-phytocompounds in plant extracts, thereby advancing the commercialization of bio-based corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 September 2022

Lawrence A. Isiofia, Emmanuel Nna, Francis O. Uzuegbunam and Eziyi O. Ibem

This research examines the association of physical development density, prevalence and types of microbes in colonized façade finishes of buildings in Enugu metropolis, Nigeria.

Abstract

Purpose

This research examines the association of physical development density, prevalence and types of microbes in colonized façade finishes of buildings in Enugu metropolis, Nigeria.

Design/methodology/approach

Survey and experimental research designs were adopted. A total of 383 buildings were investigated with samples collected from those with colonized façade finishes. The microbes were identified using the standard procedure for genomic sequencing with descriptive statistics, and the chi-square test used to analyse the data.

Findings

The results revealed a 64% prevalence of microbial colonization and a significant association between this and physical development density with 71.0% of the colonized buildings located in high-density neighbourhoods of the metropolis. The sequencing also showed 24 different microbes with Trichophyton tonsurans, Trichophyton mentagrophytes and Trichoderma harzianum species being the most common in the colonized façade finishes.

Practical implications

The research informs building professionals and owners of the specific microbes involved in the colonization of façade finishes of buildings in high-density urban areas. It also provides a clue about the nature of damages and defects associated with microbial colonization of building façades and the type of biocide additives required for the production of microbial-resistant façade finishes in the hot-humid tropical environment of Nigeria and beyond.

Originality/value

The study has shown that there is a significant relationship between the intensity of urban land use and microbial colonization of façade finishes of buildings. It also identified some new or less known microbes responsible for the biodeterioration of façade finishes and the effects this has on the buildings and public health in the hot-humid tropics of Enugu, Southeast Nigeria.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 August 2022

Francis O. Uzuegbunam, Lawrence A. Isiofia and Eziyi O. Ibem

Buildings respond differently to microbial invasion depending on the design, type of construction materials and finishes used and extent of exposure to climatic factors. However…

Abstract

Purpose

Buildings respond differently to microbial invasion depending on the design, type of construction materials and finishes used and extent of exposure to climatic factors. However, in the hot-humid tropical environment of Nigeria, much is not known about how buildings with different types of façade finishes or claddings are liable to microbial decay. The purpose of this research is to investigate the susceptibility of buildings with different types of façade finishes to microbial decay in Enugu metropolis, southeast Nigeria.

Design/methodology/approach

A survey involving physical observation of purposively selected 383 buildings and questionnaire administration to their owners was carried out in the study area. The data were subjected to descriptive and logistic regression analyses.

Findings

Most of the 383 buildings sampled were less than 41 year and 47% of them had painted façade finishes followed by 25.1% with cementitious finishes. Around 63.4% of the buildings had their façade finishes or claddings colonised by microbes. Older buildings of 15 years and above and those with cementitious materials and paints as their predominant façade finishes were more likely to experience microbial decay than newer ones and those having refractory bricks, ceramic tiles, aluminium composite materials and plastics/polymers as their predominant façade finishes or claddings.

Practical implications

The study identifies the categories of buildings that are likely to be more susceptible to microbial decay; and thus contributes to research on how to slow down the rate of biodeterioration of building façade finishes or claddings in the hot-humid tropical environments.

Originality/value

This is the first study on the susceptibility of buildings with different types of façade finishes or claddings to microbial decay in the hot-humid tropical environment of Enugu metropolis, southeast Nigeria. It also provides a clue on the age at which buildings become more vulnerable to microbial decay in the study area.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 5 of 5