Search results

1 – 10 of 22
Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 October 2022

Yasmeen Taleb Obaidat, Wasim Barham and Rawan Abu libdeh

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced…

Abstract

Purpose

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips.

Design/methodology/approach

A full 3D-finite element (FE) model was developed using ABAQUS in order to conduct the analysis. The model is first validated based on experimental data available in the literature, and then the effect of concrete compressive strength, number of CFRP strips that are used and the spacing between them were taken in consideration for both concentric and eccentric loading cases. The parametric study specimens were divided into three groups. The first group consisted of unstrengthened columns and served as control specimens. The second group consisted of columns strengthened by longitudinal CFRP strips at two opposite column faces.

Findings

The results of this study are used to develop interaction diagrams for CFRP-strengthened short columns and to develop best-fit equations to estimate the nominal axial load and moment capacities for these strengthened columns. The results showed that the specimens that were strengthened using more longitudinal CFRP strips showed a significant increase in axial load capacity and a significant improvement in the interaction diagram, especially at large load eccentricity values. This result can be justified by the fact that longitudinal strips effectively resist the bending moment that is generated due to eccentric loading. Generally, the process of strengthening using longitudinal strips only has a reasonable effect and it can be typically considered an excellent choice considering the economic aspect when the budget of strengthening is limited.

Originality/value

This research aims at studying the performance of strengthened rectangular reinforced concrete short columns with CFRP strips using FE method, developing interaction diagrams of strengthened columns in order to investigate the effect of different parameters such as compressive strength (20, 30 and 40 MPa), number of CFRP strips (1, 2, 3 and 4) and the spacing between CFRP strips in terms of the ratio of CFRP center point distance to column outside dimension ratio (0.60, 0.70 and 0.80) on the behavior of strengthened RC columns and improving empirical formulas to predict the nominal axial load and moment capacities of strengthened RC columns. These parameters that directly affect short column load carrying capacity are presented in ACI-318 (2014).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 22 August 2022

Long Liu and Songqiang Wan

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity…

89

Abstract

Purpose

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity and flexibility of reinforced concrete (RC) beams, a new composite reinforcement method using ultra-high performance concrete (UHPC) layer in the compression zone of RC beams is submitted based on embedding CFRP strips in the tension zone of RC beams. This paper aims to discuss the aforementioned points.

Design/methodology/approach

The experimental beam was simulated by ABAQUS, and compared with the experimental results, the validity of the finite element model was verified. On this basis, the reinforced RC beam is used as the control beam, and parameters such as the CFRP strip number, UHPC layer thickness, steel bar ratio and concrete strength are studied through the verified model. In addition, the numerical calculation results of yield strength, ultimate strength, failure deflection and flexibility are also given.

Findings

The flexural bearing capacity of RC beams supported by the new method is 132.3% higher than that of unreinforced beams, and 7.8% higher than that of RC beams supported only with CFRP strips. The deflection flexibility coefficient of the new reinforced RC beam is 8.06, which is higher than that of the unreinforced beam and the reinforced concrete beam with only CFRP strips embedded in the tension zone.

Originality/value

In this paper, a new reinforcement method is submitted, and the effects of various parameters on the ultimate bearing capacity and flexibility of reinforced RC beams are analyzed by the finite element numerical simulation. Finally, the effectiveness of the new method is verified by the analytical formula.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 November 2023

Benson Rugalema Mwemezi, Geraldine John Kikwasi and Sarah Phoya

Although there are several established frameworks for health and safety in construction, there are inadequate health and safety conditions at informal construction sites, and no…

Abstract

Purpose

Although there are several established frameworks for health and safety in construction, there are inadequate health and safety conditions at informal construction sites, and no framework has been designed to address this problem. The purpose of this paper is to develop a validated framework for health and safety risk management (HSRM) in informal construction sites with the aim of supporting Sustainable Development Goals 3, 8 and 11 of the 2030 Agenda, which are to ensure everyone enjoys a healthy life and to create inclusive, secure, robust and sustainable cities and human settlements, respectively.

Design/methodology/approach

The study is based on HSRM questionnaire survey and interviews with construction workers working on informal construction sites in Tanzania. A total of 13 health and safety specialists in construction were specifically chosen to validate the proposed framework for HSRM in informal construction to determine its applicability, efficacy and adaptation.

Findings

The validation results demonstrated that all of the suggested metrics within the framework for HSRM in informal construction scored higher than the test value, proving the framework’s feasibility

Originality/value

This research adds to the body of knowledge on the issue in a never-before-seen setting. To the best of the authors’ knowledge, this study is the first empirical study in Tanzania to develop and validate a framework for HSRM in informal construction.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 March 2023

Priyadarshini Das, Srinath Perera, Sepani Senaratne and Robert Osei-Kyei

Industry 4.0 is characterised by systemic transformations occurring exponentially, encompassing an array of dynamic processes and technologies. To move towards a more sustainable…

Abstract

Purpose

Industry 4.0 is characterised by systemic transformations occurring exponentially, encompassing an array of dynamic processes and technologies. To move towards a more sustainable future, it is important to understand the nature of this transformation. However, construction enterprises are experiencing a capacity shortage in identifying the transitional management steps needed to navigate Industry 4.0 better. This paper presents a maturity model with the acronym “Smart Modern Construction Enterprise Maturity Model (SMCeMM)” that provides direction to construction enterprises.

Design/methodology/approach

It adopts an iterative procedure to develop the maturity model. The attributes of Industry 4.0 maturity are obtained through a critical literature review. The model is further developed through knowledge elicitation using modified Delphi-based expert forums and subsequent analysis through qualitative techniques. The conceptual validity of the model is established through a validation expert forum.

Findings

The research defines maturity characteristics of construction enterprises across five levels namely ad-hoc, driven, transforming, integrated and innovative encompassing seven process categories; data management, people and culture, leadership and strategy, automation, collaboration and communication, change management and innovation. The maturity characteristics are then translated into assessment criteria which can be used to assess how mature a construction enterprise is in navigating Industry 4.0.

Originality/value

The results advance the field of Industry 4.0 strategy research in construction. The findings can be used to access Industry 4.0 maturity of general contractors of varying sizes and scales and generate a set of recommendations to support their macroscopic strategic planning.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 April 2024

Hazwani Shafei, Rahimi A. Rahman, Yong Siang Lee and Che Khairil Izam Che Ibrahim

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of…

Abstract

Purpose

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of Construction 4.0 technologies to enhancing well-being are still poorly understood. Particularly, the challenge lies in selecting technologies that critically contribute to well-being enhancement. Therefore, this study aims to evaluate the implications of Construction 4.0 technologies to enhancing well-being.

Design/methodology/approach

A list of Construction 4.0 technologies was identified from a national strategic plan on Construction 4.0, using Malaysia as a case study. Fourteen construction industry experts were selected to evaluate the implications of Construction 4.0 technologies on well-being using fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The expert judgment was measured using linguistic variables that were transformed into fuzzy values. Then, the collected data was analyzed using the following analyses: fuzzy TOPSIS, Pareto, normalization, sensitivity, ranking performance and correlation.

Findings

Six Construction 4.0 technologies are critical to enhancing well-being: cloud & real-time collaboration, big data & predictive analytics, Internet of Things, building information modeling, autonomous construction and augmented reality & virtualization. In addition, artificial intelligence and advanced building materials are recommended to be implemented simultaneously as a very strong correlation exists between them.

Originality/value

The novelty of this study lies in a comprehensive understanding of the implications of Construction 4.0 technologies to enhancing well-being. The findings can assist researchers, industry practitioners and policymakers in making well-informed decisions to select Construction 4.0 technologies when targeting the enhancement of the overall well-being of the local construction industry.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 31 January 2024

Zaid Alwashah, Ghaleb J. Sweis, Husam Abu Hajar, Waleed Abu-Khader and Rateb J. Sweis

This study aims to examine the challenges facing the construction industry practitioners toward adopting digital construction technologies in the Jordanian construction industry.

Abstract

Purpose

This study aims to examine the challenges facing the construction industry practitioners toward adopting digital construction technologies in the Jordanian construction industry.

Design/methodology/approach

Quantitative methods were used by reviewing the related literature to include 16 challenges that face the Jordanian construction industry in adopting digital construction. A questionnaire was used to achieve the desired study objectives for 373 respondents from various institutions and companies. The questionnaire was analyzed with SPSS using statistical tests such as mean score, Kruskal–Wallis H test and factor analysis.

Findings

After collecting the quantitative data, the study showed that the most challenges facing construction industry practitioners toward adopting digital construction techniques are lack of qualified workers, high requirement for computing equipment’s, high initial cost of bringing these technologies to the market and construction firms low investment in research and development. These challenges faced by respondents were divided into three main factors, namely, construction’s nature, financial constraints and poor management support.

Originality/value

This study provides information and statistics on the challenges that face individuals or companies toward adopting digital construction techniques in Jordan. It proposes recommendations and proper practical implantation strategies to overcome the challenges.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 May 2023

Xichen Chen, Alice Yan Chang-Richards, Tak Wing Yiu, Florence Yean Yng Ling, Antony Pelosi and Nan Yang

With growing concern about sustainable development and increased awareness of environmental issues, digital technologies (DTs) are gaining prominence and becoming a promising…

Abstract

Purpose

With growing concern about sustainable development and increased awareness of environmental issues, digital technologies (DTs) are gaining prominence and becoming a promising trend to improve productivity, sustainability and project performance in the construction industry. Nonetheless, the uptake of DTs in the construction industry has been limited and plagued with roadblocks. This study aims to identify critical barriers for construction organisations to adopt DTs and to demonstrate relationships between organisational characteristics and the perceived DTs adoption barriers.

Design/methodology/approach

This study adopted an explanatory sequential design by combining the advantages of quantitative and qualitative data. Data collection methods include literature review, a pilot study, questionnaire survey, and semi-structured interviews. Questionnaire data were analysed by using SPSS and multivariate regression technique. The interview data were processed by using content analysis to validate and supplement findings from the questionnaire.

Findings

Based on the survey and interview results, eight critical barriers were identified: the three top critical barriers are (1) “status quo industry standards”, (2) “lack of client interest” and (3) “lack of financial need/drive for using DTs”. The eight critical barriers were further classified into technical, environmental, and social dimensions to determine the major constructs that hinder DTs adoption. A theoretical framework articulating critical barriers with underlying components and root causes was also proposed. Furthermore, by using multivariate regression analysis, a model was developed to link the organisational characteristics with barriers to DTs adoption.

Practical implications

By referring to the framework and the model developed, academics, industry practitioners, and decision makers can identify pivotal areas for improvement, make informed decisions and implement remedial measures to remove the barriers to digitalisation transformation.

Originality/value

This study contributes to the literature on construction innovations by investigating barriers to DTs adoption holistically as well as perceptions of the impact of organisational attributes on these barriers. It establishes the groundwork for future empirical research into the strategic consolidation of movement of DTs adoption and diffusion.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 March 2023

Sambo Lyson Zulu, Ali Saad, Saheed Ajayi, Maria Unuigbe and Mohammed Dulaimi

Due to the practical complexity and fragmented nature of the construction industry, digitalisation, like other innovations, is not easily achieved. This study aims to explore…

Abstract

Purpose

Due to the practical complexity and fragmented nature of the construction industry, digitalisation, like other innovations, is not easily achieved. This study aims to explore organisational influences on digitalisation within construction firms.

Design/methodology/approach

The study uses structured open-ended questions as a data collection tool for a qualitative investigation. The qualitative approach enabled participants to express their inputs and maximise the diversity of data, offering new insights and discussions that are distinct from previous works.

Findings

Construction professionals from 22 organisations provided their perspectives on digital transformation and their organisations. Under four constructs – structure, culture, leadership and internal processes, findings uncovered 16 determinants critical to digitalisation in construction firms. The study offers a theoretical perspective supported by empirical data to explore the complex dynamics and internal interactions of organisational influence on the uptake of digitalisation in the construction industry.

Originality/value

This paper offers arguments from a theoretical lens by applying the organisational influence model and capturing the variables under each construct in an exploratory manner to highlight the reasoning behind the low digital uptake in construction firms. This research aids academia and practice on the pressure points responsible for enhancing, or undermining, digital uptake in construction firms at an organisational level.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 February 2024

Mohammad O. Eriqat, Rateb J. Sweis and Ghaleb J. Sweis

This paper aims to identify and provide a theoretical explanation for the barriers that hinder the adoption of emerging technologies in the architecture, engineering and…

Abstract

Purpose

This paper aims to identify and provide a theoretical explanation for the barriers that hinder the adoption of emerging technologies in the architecture, engineering and construction industry, irrespective of the company’s size, specialization or geographical location. In addition, the paper proposes potential areas for future research in this domain.

Design/methodology/approach

A list of barriers hindering the adoption of emerging technologies was identified and clarified using a systematic literature review of various scientific sources.

Findings

Twenty-five barriers were recognized and explained and some suggestions for future research studies were provided.

Research limitations/implications

The barriers related to a specific country or region or to a specific technology were excluded.

Originality/value

By providing a deeper comprehension of the barriers hindering the adoption of emerging technologies, this review is expected to encourage their adoption in the industry. Furthermore, it could prove valuable in devising effective strategies for the successful implementation of these technologies.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 22