Search results

1 – 10 of over 23000
Article
Publication date: 1 June 2021

Okechukwu Bruno-Kizito Nwadigo, Nicola Naismith, Ali GhaffarianHoseini, Amirhosein GhaffarianHoseini and John Tookey

Dynamic planning and scheduling forms a widely adopted smart strategy for solving real-world problems in diverse business systems. This paper uses deductive content analysis to…

Abstract

Purpose

Dynamic planning and scheduling forms a widely adopted smart strategy for solving real-world problems in diverse business systems. This paper uses deductive content analysis to explore secondary data from previous studies in dynamic planning and scheduling to draw conclusions on its current status, forward action and research needs in construction management.

Design/methodology/approach

The authors searched academic databases using planning and scheduling keywords without a periodic setting. This research collected secondary data from the database to draw an objective comparison of categories and conclusions about how the data relates to planning and scheduling to avoid the subjective responses from questionnaires and interviews. Then, applying inclusion and exclusion criteria, we selected one hundred and four articles. Finally, the study used a seven-step deductive content analysis to develop the categorisation matrix and sub-themes for describing the dynamic planning and scheduling categories. The authors used deductive analysis because of the secondary data and categories comparison. Using the event types represented in a quadrant mapping, authors delve into where, when, application and benefits of the classes.

Findings

The content analysis showed that all the accounts and descriptions of dynamic planning and scheduling are identifiable in an extensive research database. The content analysis reveals the need for multi-hybrid (4D BIM-Agent based-discrete event-discrete rate-system dynamics) simulation modelling and optimisation method for proffering solutions to scheduling and planning problems, its current status, tools and obstacles.

Originality/value

This research reveals the deductive content analysis talent in construction research. It also draws direction, focuses and raises a question on dynamic planning and scheduling research concerning the five-integrated model, an opportunity for their integration, models combined attributes and insight into its solution viability in construction.

Details

Smart and Sustainable Built Environment, vol. 11 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 July 2023

Binghai Zhou and Mingda Wen

In a kitting supply system, the occurrence of material-handling errors is unavoidable and will cause serious production losses to an assembly line. To minimize production losses…

Abstract

Purpose

In a kitting supply system, the occurrence of material-handling errors is unavoidable and will cause serious production losses to an assembly line. To minimize production losses, this paper aims to present a dynamic scheduling problem of automotive assembly line considering material-handling mistakes by integrating abnormal disturbance into the material distribution problem of mixed-model assembly lines (MMALs).

Design/methodology/approach

A multi-phase dynamic scheduling (MPDS) algorithm is proposed based on the characteristics and properties of the dynamic scheduling problem. In the first phase, the static material distribution scheduling problem is decomposed into three optimization sub-problems, and the dynamic programming algorithm is used to jointly optimize the sub-problems to obtain the optimal initial scheduling plan. In the second phase, a two-stage rescheduling algorithm incorporating removing rules and adding rules was designed according to the status update mechanism of material demand and multi-load AGVs.

Findings

Through comparative experiments with the periodic distribution strategy (PD) and the direct insertion method (DI), the superiority of the proposed dynamic scheduling strategy and algorithm is verified.

Originality/value

To the best of the authors’ knowledge, this study is the first to consider the impact of material-handling errors on the material distribution scheduling problem when using a kitting strategy. By designing an MPDS algorithm, this paper aims to maximize the absorption of the disturbance caused by material-handling errors and reduce the production losses of the assembly line as well as the total cost of the material transportation.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 December 2017

Vinod K.T., S. Prabagaran and O.A. Joseph

The purpose of this paper is to determine the interaction between dynamic due date assignment methods and scheduling decision rules in a typical dynamic job shop production system…

Abstract

Purpose

The purpose of this paper is to determine the interaction between dynamic due date assignment methods and scheduling decision rules in a typical dynamic job shop production system in which setup times are sequence dependent. Two due date assignment methods and six scheduling rules are considered for detailed investigation. The scheduling rules include two new rules which are modifications of the existing rules. The performance of the job shop system is evaluated using various measures related to flow time and tardiness.

Design/methodology/approach

A discrete-event simulation model is developed to describe the operation of the job shop. The simulation results are subjected to statistical analysis based on the method of analysis of variance. Regression-based analytical models have been developed using the simulation results. Since the due date assignment methods and the scheduling rules are qualitative in nature, they are modeled using dummy variables. The validation of the regression models involves comparing the predictions of the performance measures of the system with the results obtained through simulation.

Findings

The proposed scheduling rules provide better performance for the mean tardiness measure under both the due date assignment methods. The regression models yield a good prediction of the performance of the job shop.

Research limitations/implications

Other methods of due date assignment can also be considered. There is a need for further research to investigate the performance of due date assignment methods and scheduling rules for the experimental conditions that involve system disruptions, namely, breakdowns of machines.

Practical implications

The explicit consideration of sequence-dependent setup time (SDST) certainly enhances the performance of the system. With appropriate combination of due date assignment methods and scheduling rules, better performance of the system can be obtained under different shop floor conditions characterized by setup time and arrival rate of jobs. With reductions in mean flow time and mean tardiness, customers are benefitted in terms of timely delivery promises, thus leading to improved service level of the firm. Reductions in manufacturing lead time can generate numerous other benefits, including lower inventory levels, improved quality, lower costs, and lesser forecasting error.

Originality/value

Two modified scheduling rules for scheduling a dynamic job shop with SDST are proposed. The analysis of the dynamic due date assignment methods in a dynamic job shop with SDST is a significant contribution of the present study. The development of regression-based analytical models for a dynamic job shop operating in an SDST environment is a novelty of the present study.

Details

Journal of Manufacturing Technology Management, vol. 30 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 10 November 2023

Yong Gui and Lanxin Zhang

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic

Abstract

Purpose

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic job-shop scheduling problem (DJSP). Although the dynamic SDR selection classifier (DSSC) mined by traditional data-mining-based scheduling method has shown some improvement in comparison to an SDR, the enhancement is not significant since the rule selected by DSSC is still an SDR.

Design/methodology/approach

This paper presents a novel data-mining-based scheduling method for the DJSP with machine failure aiming at minimizing the makespan. Firstly, a scheduling priority relation model (SPRM) is constructed to determine the appropriate priority relation between two operations based on the production system state and the difference between their priority values calculated using multiple SDRs. Subsequently, a training sample acquisition mechanism based on the optimal scheduling schemes is proposed to acquire training samples for the SPRM. Furthermore, feature selection and machine learning are conducted using the genetic algorithm and extreme learning machine to mine the SPRM.

Findings

Results from numerical experiments demonstrate that the SPRM, mined by the proposed method, not only achieves better scheduling results in most manufacturing environments but also maintains a higher level of stability in diverse manufacturing environments than an SDR and the DSSC.

Originality/value

This paper constructs a SPRM and mines it based on data mining technologies to obtain better results than an SDR and the DSSC in various manufacturing environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 February 2023

Lin-Lin Xie, Yajiao Chen, Sisi Wu, Rui-Dong Chang and Yilong Han

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to…

Abstract

Purpose

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to focus on finding suitable algorithms to solve various scheduling problems and fail to find the potential scheduling rules in these optimal or near-optimal solutions, that is, the possible intrinsic relationships between attributes related to the scheduling of activity sequences. Data mining (DM) is used to analyze and interpret data to obtain valuable information stored in large-scale data. The goal of this paper is to use DM to discover scheduling concepts and obtain a set of rules that approximate effective solutions to resource-constrained project scheduling problems. These rules do not require any search and simulation, which have extremely low time complexity and support real-time decision-making to improve planning/scheduling.

Design/methodology/approach

The resource-constrained project scheduling problem can be described as scheduling a group of interrelated activities to optimize the project completion time and other objectives while satisfying the activity priority relationship and resource constraints. This paper proposes a new approach to solve the resource-constrained project scheduling problem by combining DM technology and the genetic algorithm (GA). More specifically, the GA is used to generate various optimal project scheduling schemes, after that C4.5 decision tree (DT) is adopted to obtain valuable knowledge from these schemes for further predicting and solving new scheduling problems.

Findings

In this study, the authors use GA and DM technology to analyze and extract knowledge from a large number of scheduling schemes, and determine the scheduling rule set to minimize the completion time. In order to verify the application effect of the proposed DT classification model, the J30, J60 and J120 datasets in PSPLIB are used to test the validity of the scheduling rules. The results show that DT can readily duplicate the excellent performance of GA for scheduling problems of different scales. In addition, the DT prediction model developed in this study is applied to a high-rise residential project consisting of 117 activities. The results show that compared with the completion time obtained by GA, the DT model can realize rapid adjustment of project scheduling problem to deal with the dynamic environment interference. In a word, the data-based approach is feasible, practical and effective. It not only captures the knowledge contained in the known optimal scheduling schemes, but also helps to provide a flexible scheduling decision-making approach for project implementation.

Originality/value

This paper proposes a novel knowledge-based project scheduling approach. In previous studies, intelligent optimization algorithm is often used to solve the project scheduling problem. However, although these intelligent optimization algorithms can generate a set of effective solutions for problem instances, they are unable to explain the process of decision-making, nor can they identify the characteristics of good scheduling decisions generated by the optimization process. Moreover, their calculation is slow and complex, which is not suitable for planning and scheduling complex projects. In this study, the set of effective solutions of problem instances is taken as the training dataset of DM algorithm, and the extracted scheduling rules can provide the prediction and solution of new scheduling problems. The proposed method focuses on identifying the key parameters of a specific dynamic scheduling environment, which can not only reproduces the scheduling performance of the original algorithm well, but also has the ability to make decisions quickly under the dynamic interference construction scenario. It is helpful for project managers to implement quick decisions in response to construction emergencies, which is of great practical significance for improving the flexibility and efficiency of construction projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 August 2014

Yanting Ni, Yuchen Li, Jin Yao and Jingmin Li

In a complex semiconductor manufacturing system (SMS) environment, the implementation of dynamic production scheduling and dispatching strategies is critical for SMS distributed…

Abstract

Purpose

In a complex semiconductor manufacturing system (SMS) environment, the implementation of dynamic production scheduling and dispatching strategies is critical for SMS distributed collaborative manufacturing events to make quick and correct decisions. The purpose of this paper is to assist manufacturers in achieving the real time dispatching and obtaining integrated optimization for shop floor production scheduling.

Design/methodology/approach

In this paper, an integrated model is designed under assemble to order environment and a framework of a real time dispatching (IRTD) system for production scheduling control is presented accordingly. Both of the scheduling and ordering performances are integrated into the days of inventory based dispatching algorithm, which can deal with the multiple indicators of dynamic scheduling and ordering in this system to generate the “optimal” dispatching policies. Subsequently, the platform of IRTD system is realized with four modules function embedded.

Findings

The proposed IRTD system is designed to compare the previous constant work in process method in the experiment, which shows the better performance achievement of the IRTD system for shop floor production dynamic scheduling and order control. The presented framework and algorithm can facilitate real time dispatching information integration to obtain performance metrics in terms of reliability, availability, and maintainability.

Research limitations/implications

The presented system can be further developed to generic factory manufacturing with the presented logic and architecture proliferation.

Originality/value

The IRTD system can integrate the real time customer demand and work in process information, based on which manufacturers can make correct and timely decisions in solving dispatching strategies and ordering selection within an integrated information system.

Details

Journal of Manufacturing Technology Management, vol. 25 no. 7
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 1 July 2000

M. Jahangirian and G.V. Conroy

Learning machine scheduling strategies are addressed while concentrating on the dynamic nature of real systems. A framework is proposed consisting of two modules: intelligent…

Abstract

Learning machine scheduling strategies are addressed while concentrating on the dynamic nature of real systems. A framework is proposed consisting of two modules: intelligent simulation (IS) and incremental learning. A simulation technique is basically exploited to mirror the manufacturing system. The knowledge base incorporated within the simulation environment enables the IS to behave intelligently as well as to evaluate the knowledge base (KB). A genetic algorithm drives the learning module. Its ingredients are tailored to tackle such a problem with a huge search space. A set of decision rules is identified as a chromosome. The rule set’s fitness is related to the scheduling performance measure and is scaled. A crossover and three kinds of mutations together with a steady‐state replacement technique are designed to discover the (near) best rule set. The whole framework is designed to work in an automated way. A series of test results on a basic model show that the proposed system learns, adapts itself to the dominating dynamic patterns, and converges to the optimum solution.

Details

Integrated Manufacturing Systems, vol. 11 no. 4
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 1 March 2004

Anand S. Kunnathur, P.S. Sundararaghavan and Sriram Sampath

The development of a rule‐based expert system (ES), driven by a discrete event simulation model, that performs dynamic shop scheduling is described. Based on a flowtime prediction…

1908

Abstract

The development of a rule‐based expert system (ES), driven by a discrete event simulation model, that performs dynamic shop scheduling is described. Based on a flowtime prediction heuristic that has been developed and base‐line runs to establish the efficacy of scheduling strategies such as shortest processing time (SPT), critical ratio, total work, etc., a rescheduling‐based dispatching strategy is investigated in a dynamic job shop environment. The results are discussed and analyzed.

Details

Journal of Manufacturing Technology Management, vol. 15 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 10 December 2021

S. Chandramohan and M. Senthilkumaran

In recent years, it is imperative to establish the structure of manufacturing industry in the context of smart factory. Due to rising demand for exchange of information with…

Abstract

Purpose

In recent years, it is imperative to establish the structure of manufacturing industry in the context of smart factory. Due to rising demand for exchange of information with various devices, and huge number of sensor nodes, the industrial wireless networks (IWNs) face network congestion and inefficient task scheduling. For this purpose, software-defined network (SDN) is the emerging technology for IWNs, which is integrated into cognitive industrial Internet of things for dynamic task scheduling in the context of industry 4.0.

Design/methodology/approach

In this paper, the authors present SDN based dynamic resource management and scheduling (DRMS) for effective devising of the resource utilization, scheduling, and hence successful transmission in a congested medium. Moreover, the earliest deadline first (EDF) algorithm is introduced in authors’ proposed work for the following criteria’s to reduce the congestion in the network and to optimize the packet loss.

Findings

The result shows that the proposed work improves the success ratio versus resource usage probability and number of nodes versus successful joint ratio. At last, the proposed method outperforms the existing myopic algorithms in terms of query response time, energy consumption and success ratio (packet delivery) versus number of increasing nodes, respectively.

Originality/value

The authors proposed a priority based scheduling between the devices and it is done by the EDF approach. Therefore, the proposed work reduces the network delay time and minimizes the overall energy efficiency.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 April 2004

Rong‐Lei Sun, Han Ding, Youlun Xiong and Runsheng Du

Dispatching rule‐based scheduling is a kind of dynamic scheduling commonly used in real world applications. Because of the lack of scheduling objective, it cannot optimize the…

1008

Abstract

Dispatching rule‐based scheduling is a kind of dynamic scheduling commonly used in real world applications. Because of the lack of scheduling objective, it cannot optimize the specific performances at which shop managers aim in the current production period. To overcome the limitations of the dispatching rule‐based scheduling, an iterative learning scheduling scheme is proposed in this paper. A scheduling objective function, which reflects the performance criteria in which the shop managers are most interested, is established and used to guide the optimization of the crucial performances. According to the value of the scheduling objective obtained from the last simulation period, the parameters are adjusted so as to decrease the objective during the next simulation period. Experimental results show that the iterative learning scheduling overcomes the limitations of the dispatching rule‐based scheduling and achieves higher performances.

Details

Journal of Manufacturing Technology Management, vol. 15 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of over 23000