Search results

1 – 10 of 21
Open Access
Article
Publication date: 6 May 2021

Zakaria Mohamed Salem Elbarbary and Mohamed Abdullrahman Alranini

Silicon photovoltaics technology has drawbacks of high cost and power conversion efficiency. In order to extract the maximum output power of the module, maximum power point (MPP…

9437

Abstract

Purpose

Silicon photovoltaics technology has drawbacks of high cost and power conversion efficiency. In order to extract the maximum output power of the module, maximum power point (MPP) is used by implying the nonlinear behavior of I-V characteristics. Different techniques are used regarding maximum power point tracking (MPPT). The paper aims to review the techniques of MPPT used in PV systems and review the comparison between Perturb and Observe (P&O) method and incremental conductance (IC) method that are used to track the maximum power and gives a comparative review of all those techniques.

Design/methodology/approach

A study of MPPT techniques for photovoltaic (PV) systems is presented. Matlab Simulink is used to find the MPP using P&O simulation along with IC simulation at a steady temperature and irradiance.

Findings

MATLAB simulations are used to implement the P&O method and IC method, which includes a PV cell connected to an MPPT-controlled boost converter. The simulation results demonstrate the accuracy of the PV model as well as the functional value of the algorithms, which has improved tracking efficiency and dynamic characteristics. P&O solution gave 94% performance when configured. P&O controller has a better time response process. As compared to the P&O method of tracking, the incremental conductance response rate was significantly slower.

Originality/value

In PV systems, MPPT techniques are used to optimize the PV array output power by continuously tracking the MPP under a variety of operating conditions, including cell temperature and irradiation level.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 29 December 2017

Prasenjit Dey, Aniruddha Bhattacharya and Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are…

1720

Abstract

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 24 September 2019

Aboubakar Seddik Bouchikhi

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double…

1093

Abstract

Purpose

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) functionally graded material (FGM) plate subjected to tensile mechanical load.

Design/methodology/approach

For this purpose the variations of the material properties are applied at the integration points and at the nodes by implementing a subroutine USDFLD in the ABAQUS software. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is demonstrated. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is examined; also the effect of different parameters for double notch FGM plate is investigated as well as the effect of band of FGM within the ceramic plate to reduce J-integral.

Findings

According to the numerical analysis, all parameters above played an important role in determining the J-integral.

Originality/value

The present study consists in investigating the simulation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) FGM plate under Mode I. The J-integral is determined for various load applied. The cracked plate is joined by bonding an FGM layer to TiB plate on its double side. The determination of the gain on J-integral by using FGM layer is highlighted. The calculation of J-integral of FGM’s involves the direction of the radius of the notch in order to reduce the J-integral.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 25 October 2021

Junjie Lu

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Abstract

Purpose

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Design/methodology/approach

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals. First, a theoretical model of modified generalized Reynolds equation is derived with slipping effect of a micro gap for spiral groove gas seal. Second, the test technology examines micro-scale gas film vibration and stationary ring vibration to determine gas film stiffness by establishing a dynamic test system.

Findings

An optimum value of the spiral angle and groove depth for improved gas film stiffness is clearly seen: the spiral angle is 1.34 rad (76.8º) and the groove depth is 1 × 10–5 m. Moreover, it can be observed that optimal structural parameters can obtain higher gas film stiffness in the experiment. The average error between experiment and theory is less than 20%.

Originality/value

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 30 November 2020

Yaqin Zhang, Mingming Wang, Ruimin Wang, Zhipeng Li and Nan Zhang

This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible.

5043

Abstract

Purpose

This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible.

Design/methodology/approach

Hence, an integer linear programming model for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The proposed model based on the alternative graph at the microscopic level depicts the freight train movements in detail. Multiple dispatching measures such as re-timing and re-ordering are taken into account. Moreover, two objective functions, namely, the total final delays and the consecutive delays, are minimized in the freight trains dispatching problem.

Findings

Finally, a real-world computational experiment based on the Haolebaoji-Ji’an freight heavy-haul railway is implemented. The results of all disrupted cases are obtained within 10 s. The results give insight into that the consecutive delays are more than the total final delays when the same disrupted situation and the consecutive or total final delays increase as the primary delays increase.

Originality/value

An integer linear programming model based on the alternative graph for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The method can be developed as the computer-aided tool for freight train dispatchers.

Details

Smart and Resilient Transportation, vol. 2 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1142

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 16 October 2017

Muhammad Ali Memon, Mohamed Hedi Karray, Agnès Letouzey and Bernard Archimède

In difficult geographical zones (mountain, intra-cities areas, etc.), many shippers, from small and medium enterprises to individuals, may demand delivery of different food…

2833

Abstract

Purpose

In difficult geographical zones (mountain, intra-cities areas, etc.), many shippers, from small and medium enterprises to individuals, may demand delivery of different food products (fresh, refrigerated, frozen, etc.) in small quantities. On the other side, carrier companies wish to use their vehicles optimally. Taking into account the perishability constraints (short-shelflife, temperature limits, etc.) of the transported food products and environmental constraints (pollution, carbon impact) while consolidating multiple kinds of food products to use vehicles optimally is not achieved by current transportation planning solutions. The purpose of this paper is to present an interoperable solution of a marketplace, formed by shippers and carriers, dedicated to the schedule of food transport orders.

Design/methodology/approach

This transportation planning system named Interoperable-Pathfinder, Order, Vehicle, Environment and Supervisor (I-POVES) is an interoperable multi-agent system, based on the SCEP (supervisor, customer, environment and producer) model (Archimede and Coudert, 2001). Ontologies are developed to create the planning marketplace comprising demands and offers from different sources (multiple shippers and carriers).

Findings

A hierarchy ontology for food products. A transporter system ontology. A global ontology that contains all shared concepts used by local ontologies of both shippers and carriers. I-POVES an interoperable model, which facilitates collaboration between carriers and their shippers through its active agents.

Practical implications

I-POVES is tested on a case study from the TECCAS Poctefa project, comprising transport and food companies from both sides of the Pyrenees (France and Spain).

Originality/value

There has been much work in the literature on the delivery of products, but very few on the delivery of food products. Work related to delivery of food products focuses mostly on timely delivery for avoiding its wastage. In this paper, constraints related to food products and to environment (pollution and carbon impact) of transport resources are taken into account while planning the delivery.

Details

Industrial Management & Data Systems, vol. 117 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 15 May 2020

Horst Treiblmaier, Kristijan Mirkovski, Paul Benjamin Lowry and Zach G. Zacharia

The physical internet (PI) is an emerging logistics and supply chain management (SCM) concept that draws on different technologies and areas of research, such as the Internet of…

10013

Abstract

Purpose

The physical internet (PI) is an emerging logistics and supply chain management (SCM) concept that draws on different technologies and areas of research, such as the Internet of Things (IoT) and key performance indicators, with the purpose of revolutionizing existing logistics and SCM practices. The growing literature on the PI and its noteworthy potential to be a disruptive innovation in the logistics industry call for a systematic literature review (SLR), which we conducted that defines the current state of the literature and outlines future research directions and approaches.

Design/methodology/approach

The SLR that was undertaken included journal publications, conference papers and proceedings, book excerpts, industry reports and white papers. We conducted descriptive, citation, thematic and methodological analyses to understand the evolution of PI literature.

Findings

Based on the literature review and analyses, we proposed a comprehensive framework that structures the PI domain and outlines future directions for logistics and SCM researchers.

Research limitations/implications

Our research findings are limited by the relatively low number of journal publications, as the PI is a new field of inquiry that is composed primarily of conference papers and proceedings.

Originality/value

The proposed PI-based framework identifies seven PI themes, including the respective facilitators and barriers, which can inform researchers and practitioners on future potentially disruptive SC strategies.

Details

The International Journal of Logistics Management, vol. 31 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 22 November 2022

Leopoldo Gutierrez, Bart Alex Lameijer, Gopesh Anand, Jiju Antony and Vijaya Sunder M

The purpose of this study is to theorize and test the relationships among lean operations and lean supply chain practices, learning- and innovation-oriented lean cultures and…

2391

Abstract

Purpose

The purpose of this study is to theorize and test the relationships among lean operations and lean supply chain practices, learning- and innovation-oriented lean cultures and dynamic capabilities (DCs) microfoundations. Further, this study aims to assess the association of DCs microfoundations with process innovation.

Design/methodology/approach

The researchers combine primary data collected from 153 manufacturing firms located in five continents using a survey designed for the purpose of this study with archival data downloaded from the Bureau Van Dijk Orbis database and test the hypothesized relationships using structural equation modelling.

Findings

Results support the contribution of lean operations and lean supply chain practices to the development of DCs microfoundations, which further lead to greater process innovation. Additionally, while a learning-oriented lean culture positively moderates the relationships between both lean operations and lean supply chain practices and DCs microfoundations, an innovation-oriented lean culture only moderates the relationship between lean operations practices and DCs microfoundations.

Practical implications

This study identifies DCs microfoundations as the key mechanisms for firms implementing lean practices to achieve greater levels of process innovation and the important role played by lean cultures. This study provides direction for managers to put in place DCs through lean implementations, enabling their firms to be ready to respond to challenges and opportunities generated by environmental changes.

Originality/value

While previous research has confirmed the positive effects of lean practices on efficiency, the role of lean practices and cultures in developing capabilities for reacting to environmental dynamism has received little attention. This study offers an empirically supported framework that highlights the potential of lean to adapt processes in response to environmental dynamics, thereby extending the lean paradigm beyond the traditional focus on operational efficiency.

Details

International Journal of Operations & Production Management, vol. 42 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

1 – 10 of 21