Search results

1 – 10 of over 3000
Article
Publication date: 3 July 2017

Van Quang Dinh and Yves Marechal

In FEM computations, the mesh quality improves the accuracy of the approximation solution and reduces the computation time. The dynamic bubble system meshing technique can provide…

Abstract

Purpose

In FEM computations, the mesh quality improves the accuracy of the approximation solution and reduces the computation time. The dynamic bubble system meshing technique can provide high-quality meshes, but the packing process is time-consuming. This paper aims to improve the running time of the bubble meshing by using the advantages of parallel computing on graphics processing unit (GPU).

Design/methodology/approach

This paper is based on the analysis of the processing time on CPU. A massively parallel computing-based CUDA architecture is proposed to improve the bubble displacement and database updating. Constraints linked to hardware considerations are taken into account. Finally, speedup factors are provided on test cases and real scale examples.

Findings

The numerical experiences show the efficiency of parallel performance reaches a speedup of 35 compared to the serial implementation.

Research limitations/implications

This contribution is so far limited to two-dimensional (2D) geometries although the extension to three-dimension (3D) is straightforward regarding the meshing technique itself and the GPU implementation. The authors’ works are based on a CUDA environment which is widely used by developers. C\C++ and Java were the programming languages used. Other languages may of course lead to slightly different implementations.

Practical implications

This approach makes it possible to use bubble meshing technique for both initial design and optimization, as excellent meshes can be built in few seconds.

Originality/value

Compared to previous works, this contribution shows that the scalability of the bubble meshing technique needs to solve two key issues: reach a T(N) global cost of the implementation and reach a very fast size map interpolation strategy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1667

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing…

1896

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 August 2018

Feng Cheng and Weixi Ji

Cavitation bubbles cannot be avoided in the hydraulic system. Because of instability of flow and variation of water pressure, the jet often occurs in a bubble collapse. This study…

Abstract

Purpose

Cavitation bubbles cannot be avoided in the hydraulic system. Because of instability of flow and variation of water pressure, the jet often occurs in a bubble collapse. This study aims to accurately predict the shape, velocity and time of the resulting jet, so as to inhibit cavitation erosion.

Design/methodology/approach

In the study, a theoretical model of cavitation bubbles in the water has been developed by applying a periodic water film pressure into the Rayleigh–Plesset equation. A fourth-order in time Runge–Kutta scheme is used to obtain an accurate computation of the bubble dynamic characteristics. The behavior of the proposed theory is further simulated in a high-speed photography experiment by using a cavitation bubble test rig. The evolution with time of cavitation bubbles is further obtained.

Findings

A comparison with the available experimental results reveals that the bubble evolution with time has a duration of about 0.3T0, that well predicts the expanding and compressing process of cavitation bubbles. The results also show that the initial bubble radius in the water influences the moving velocity of the bubble wall, whereas the perturbation frequency of the water pressure has less effect on the velocity of the bubble wall.

Originality/value

A theoretical model well predicts dynamic characteristics of cavitation bubbles. The bubble evolution with time has a duration of about 0.3T0, Initial bubble radius influences the velocity of bubble wall. Perturbation frequency has less effect on the velocity of bubble wall.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 November 2012

Semyon Levitsky, Rudolf Bergman and Jehuda Haddad

The objective of this study is to model the influence of free gas, in the form of size‐distributed fine bubbles, on sound attenuation and dispersion in a thin‐walled elastic…

Abstract

Purpose

The objective of this study is to model the influence of free gas, in the form of size‐distributed fine bubbles, on sound attenuation and dispersion in a thin‐walled elastic cylindrical tube filled with viscoelastic polymeric liquid.

Design/methodology/approach

Sound wave propagation in the system is described within a three‐phase interaction scheme, based on a quasi‐homogeneous approach to liquid‐gas mixture dynamics in the wave. Coupled equations of tube wall deformations and viscoelastic liquid dynamics in the tube are solved using a long‐wave approximation. The dissipative losses, stemming from flow gradients in the wave, as well as from non‐equilibrium bubble‐liquid interaction, are accounted for. The dispersion equation for the waveguide is obtained and studied numerically.

Findings

The results of the study indicate that bubble‐size distribution in viscoelastic liquid has an essential impact on sound propagation in the tube at sufficiently high frequencies. The frequency range in which the mixture heterogeneity influences the acoustic properties of the system is sensitive to both the distribution parameters and the rheological properties of the liquid. As distinct to polydispersity features, the viscoelastic properties of liquid are also relevant in the low‐frequency range, where they lead to an increase of the wave speed and a decrease of its attenuation.

Originality/value

A model of sound wave propagation in a tube filled with a heterogeneous viscoelastic liquid‐bubble mixture is formulated. The study provides a basis for modeling transient processes in tubes filled with polymeric liquids containing free gas, and for acoustic control of certain processes in polymer technologies.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 May 2021

Runqiang Zhang, Guoyong Sun, Yuchuan Wang and Sebastián Leguizamón

The study aims to display the bubbles' evolution in the shear layer and their relationship with the pressure fluctuations. Furthermore, the coherent structures of the first six…

Abstract

Purpose

The study aims to display the bubbles' evolution in the shear layer and their relationship with the pressure fluctuations. Furthermore, the coherent structures of the first six modes are extracted, in order to provide insight into their temporal and spatial evolution and determine the relationship between cavitating bubbles and coherent structures.

Design/methodology/approach

In the present study, numerical simulations of submerged jet cavitating flow were carried out at a cavitation inception condition inside an axisymmetric cavity using the large eddy simulation (LES) turbulence model and the Schnerr–Sauer (S–S) cavitation model. Based on snapshots produced by the numerical simulation, dynamic mode decomposition (DMD) was performed to extract the three-dimensional coherent structures of the first six modes in the shear layer.

Findings

The cavitating bubbles in the shear layer are deformed to elongated ellipsoid shapes by shear forces. The significant pressure fluctuations are induced by the collapse of the biggest bubble in the group. The first mode illustrates the mean characteristics of the flow field. The flow in the peripheral region of the shear layer is mainly dominated by large-scale coherent structures revealed by the second and third modes, while different small-scale coherent structures are contained in the central region. The cavitating bubbles are associated with small size coherent structures as the sixth or higher modes.

Practical implications

This work demonstrates the feasibility of LES for high Reynolds number shear layer flow. The dynamic mode decomposition method is a novel method to extract coherent structures and obtain their dynamic information that will help us to optimize and control the flow.

Originality/value

(1) This paper first displays the three-dimensional coherent structures and their characteristics in the shear layer of confined jet flow. (2) The relationship of bubbles shape and pressure fluctuations is illustrated. (3) The visualization of coherent structures benefits the understanding of the mixing process and cavitation inception in jet shear layers.

Article
Publication date: 1 June 1996

Victor P. Janule

Water‐based inks and coatings require alcohols and surfactants to lower their surface tensions to acceptable levels, but have inherent problems of surface wetting, foaming, flow…

Abstract

Water‐based inks and coatings require alcohols and surfactants to lower their surface tensions to acceptable levels, but have inherent problems of surface wetting, foaming, flow and levelling common to water‐based systems. They are formulated quite differently from solvent‐based systems, which wet readily and transfer well on to most ink train materials. Surfactants used in water‐based systems tend to be highly surface‐active and can vary significantly with concentration and speed of diffusion depending on the surfactant type and molecular weight and structure compared with inherently low surface tension alcohols. A coating process is dynamic and, because active surfactants are utilized, surface tension will vary as application and press speed vary. It is the resulting variation in the speed of diffusion of the surfactant molecules that directly impacts on the quality of spreading and adhesion. Ink and coatings formulators must have knowledge of the principles of dynamic surface tension, and have instruments that can measure surface tension characteristics. Instruments must be simple to use, accurate, and as automatic as possible, to allow formulators to spend a minimum amount of time gathering necessary data.

Details

Pigment & Resin Technology, vol. 25 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2005

C.C. Pain, J.L.M.A. Gomes, Eaton, C.R.E. de Oliveira and A.J.H. Goddard

To present dynamical analysis of axisymmetric and three‐dimensional (3D) simulations of a nuclear fluidized bed reactor. Also to determine the root cause of reactor power…

Abstract

Purpose

To present dynamical analysis of axisymmetric and three‐dimensional (3D) simulations of a nuclear fluidized bed reactor. Also to determine the root cause of reactor power fluctuations.

Design/methodology/approach

We have used a coupled neutron radiation (in full phase space) and high resolution multiphase gas‐solid Eulerian‐Eulerian model.

Findings

The reactor can take over 5 min after start up to establish a quasi‐steady‐state and the mechanism for the long term oscillations of power have been established as a heat loss/generation mechanism. There is a clear need to parameterize the temperature of the reactor and, therefore, its power output for a given fissile mass or reactivity. The fission‐power fluctuates by an order of magnitude with a frequency of 0.5‐2 Hz. However, the thermal power output from gases is fairly steady.

Research limitation/implications

The applications demonstrate that a simple surrogate of a complex model of a nuclear fluidised bed can have a predictive ability and has similar statistics to the more complex model.

Practical implications

This work can be used to analyze chaotic systems and also how the power is sensitive to fluctuations in key regions of the reactor.

Originality/value

The work presents the first 3D model of a nuclear fluidised bed reactor and demonstrates the value of numerical methods for modelling new and existing nuclear reactors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 8 August 2017

Kenshiro Ninomiya and Masaaki Tokuda

The Japanese economy experienced prosperity during the bubble economy and has suffered from a prolonged recession since the bubble economy collapsed. This paper examines how the…

Abstract

The Japanese economy experienced prosperity during the bubble economy and has suffered from a prolonged recession since the bubble economy collapsed. This paper examines how the interest-bearing debt burden, structural change, and instability of confidence affect dynamic systems. Moreover, it examines these factors in the Japanese economy by applying a recursive vector autoregression analysis. This paper emphasizes the interest-bearing debt burden, the economic structure resulting from the instability of confidence, and the instability of confidence resulting from debt burden play important roles in the instability of the economy. As a result, Japan’s economy was determined to be relatively stable from 1980 to 1996, but was unstable, thereafter.

Details

Return of Marxian Macro-Dynamics in East Asia
Type: Book
ISBN: 978-1-78714-477-4

Keywords

Article
Publication date: 21 January 2019

Qisheng Wang, Boqing Gao and Hui Wu

Modern CAD systems facilitate the creation of any surface geometry imaginable, and complex surfaces for free-form grid shells are often represented by a set of Non-Uniform…

Abstract

Purpose

Modern CAD systems facilitate the creation of any surface geometry imaginable, and complex surfaces for free-form grid shells are often represented by a set of Non-Uniform Rational B-Splines surface patches. But it remains an intractable issue how to generate high-quality grids on complex surfaces efficiently. To solve this issue, an automatic triangular mesh generation method is presented, based on bubble dynamics simulation and a modified Delaunay method.

Design/methodology/approach

A moderate amount of points are first distributed on a given surface. Next, by regarding the points as elastic bubbles with the same size and introducing the forces acting on bubbles, the motion control equations of bubbles are established. The equilibrium state of the bubble system is found by Verlet algorithm. Then, the Voronoi diagram on the surface is obtained by calculating the intersection between the surface and the three-dimensional (3D) Voronoi diagram of the centers of bubbles. Finally, a triangular mesh, Delaunay triangulation on the surface, is determined based on the dual change of the Voronoi diagram.

Findings

This method generates meshes on the surface directly, unlike mapping-based methods, avoiding the mapping distortion. Examples are given to demonstrate the successful execution of this method. The result also illustrates that this method is applicable to various surfaces in high automation level and resultant meshes are highly uniform and well-shaped.

Originality/value

Thus, this method provides the convenience for the geometry design of complex free-form grid structure.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000