Search results

1 – 10 of 55
Article
Publication date: 2 September 2019

Bo Zhang, Guanglong Du, Wenming Shen and Fang Li

The purpose of this paper is the research of a novel gesture-based dual-robot collaborative interaction interface, which achieves the gesture recognition when both hands overlap…

Abstract

Purpose

The purpose of this paper is the research of a novel gesture-based dual-robot collaborative interaction interface, which achieves the gesture recognition when both hands overlap. This paper designs a hybrid-sensor gesture recognition platform to detect the both-hand data for dual-robot control.

Design/methodology/approach

This paper uses a combination of Leap Motion and PrimeSense in the vertical direction, which detects both-hand data in real time. When there is occlusion between hands, each hand is detected by one of the sensors, and a quaternion-based algorithm is used to realize the conversion of two sensors corresponding to different coordinate systems. When there is no occlusion, the data are fused by a self-adaptive weight fusion algorithm. Then the collision detection algorithm is used to detect the collision between robots to ensure safety. Finally, the data are transmitted to the dual robots.

Findings

This interface is implemented on a dual-robot system consisting of two 6-DOF robots. The dual-robot cooperative experiment indicates that the proposed interface is feasible and effective, and it takes less time to operate and has higher interaction efficiency.

Originality/value

A novel gesture-based dual-robot collaborative interface is proposed. It overcomes the problem of gesture occlusion in two-hand interaction with low computational complexity and low equipment cost. The proposed interface can perform a long-term stable tracking of the two-hand gestures even if there is occlusion between the hands. Meanwhile, it reduces the number of hand reset to reduce the operation time. The proposed interface achieves a natural and safe interaction between the human and the dual robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 January 2024

Siming Cao, Hongfeng Wang, Yingjie Guo, Weidong Zhu and Yinglin Ke

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance…

Abstract

Purpose

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance relative accuracy of the dual-robot system through direct compensation of relative errors. To achieve this, a novel calibration-driven transfer learning method is proposed for relative error prediction in dual-robot systems.

Design/methodology/approach

A novel local product of exponential (POE) model with minimal parameters is proposed for error modeling. And a two-step method is presented to identify both geometric and nongeometric parameters for the mono-robots. Using the identified parameters, two calibrated models are established and combined as one dual-robot model, generating error data between the nominal and calibrated models’ outputs. Subsequently, the calibration-driven transfer, involving pretraining a neural network with sufficient generated error data and fine-tuning with a small measured data set, is introduced, enabling knowledge transfer and thereby obtaining a high-precision relative error predictor.

Findings

Experimental validation is conducted, and the results demonstrate that the proposed method has reduced the maximum and average relative errors by 45.1% and 30.6% compared with the calibrated model, yielding the values of 0.594 mm and 0.255 mm, respectively.

Originality/value

First, the proposed calibration-driven transfer method innovatively adopts the calibrated model as a data generator to address the issue of real data scarcity. It achieves high-accuracy relative error prediction with only a small measured data set, significantly enhancing error compensation efficiency. Second, the proposed local POE model achieves model minimality without the need for complex redundant parameter partitioning operations, ensuring stability and robustness in parameter identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 March 2016

Honglun Huan, Liang Cheng and Yinglin Ke

The purpose of this paper is to present a dual-robot pneumatic riveting system for fuselage panel assembly, including the system design, dynamic analysis and sensitivity analysis…

Abstract

Purpose

The purpose of this paper is to present a dual-robot pneumatic riveting system for fuselage panel assembly, including the system design, dynamic analysis and sensitivity analysis. The dual-robot pneumatic riveting system is designed to improve riveting efficiency and quality, thus finally replace the traditional two-man riveting mode where possible.

Design/methodology/approach

The dual-robot pneumatic riveting system has been designed by considering vibration reduction for the tools and isolation for robots. Nonlinear multi-body dynamic model including clearance and collision is established for investigating the dynamic performance and analyzing the systemic sensitivities with respect to the key variations. Semi-implicit Runge–Kuta algorithm is used for solving the dynamic equations and shop experiments are implemented to verify the effectiveness of the numerical simulations.

Findings

The simulation results show the tools can be held stably enough for riveting operation and the system sensitivity with respect to robot gesture can achieve the expected level. The experiment validates the proposed system with a good performance, and the riveting quality could adequately meet the requirements. The system is capable of installing an aluminum alloy countersunk 5 mm diameter rivet in 5 s.

Practical implications

The dual robot pneumatic riveting system is successfully developed and test. It has been applied in a project of fuselage panel assembly in the aircraft manufacturing industry in China.

Originality/value

To replace the traditional manual rivet installation, this paper presents a dual robot pneumatic riveting system and includes both the system design and dynamic analysis.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 February 2024

Xiaohui Jia, Chunrui Tang, Xiangbo Zhang and Jinyue Liu

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single…

Abstract

Purpose

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single robot during construction operations.

Design/methodology/approach

A hybrid task allocation method based on integer programming and auction algorithms, with the aim of achieving a balanced workload between two robots has been proposed. In addition, while ensuring reasonable workload allocation between the two robots, an improved dual ant colony algorithm was used to solve the dual traveling salesman problem, and the global path planning of the two robots was determined, resulting in an efficient and collision-free path for the dual robots to operate. Meanwhile, an improved fast Random tree rapidly-exploring random tree algorithm is introduced as a local obstacle avoidance strategy.

Findings

The proposed method combines randomization and iteration techniques to achieve an efficient task allocation strategy for two robots, ensuring the relative optimal global path of the two robots in cooperation and solving complex local obstacle avoidance problems.

Originality/value

This method is applied to the scene of steel bar tying in construction work, with the workload allocation and collaborative work between two robots as evaluation indicators. The experimental results show that this method can efficiently complete the steel bar banding operation, effectively reduce the interference between the two robots and minimize the interference of obstacles in the environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 August 2021

Youdong Chen and Qi Hu

The membrane wall is one of the most important components in the boiler industry and numerous studs are welded on its surface. The membrane wall welding still remains a sector…

Abstract

Purpose

The membrane wall is one of the most important components in the boiler industry and numerous studs are welded on its surface. The membrane wall welding still remains a sector intensive in the manual and arduous works. This paper aims to propose a dual-robot system to automatically weld studs on the membrane wall.

Design/methodology/approach

In this paper, the authors proposed a dual-robot stud welding system for membrane walls. First, the membrane wall is divided into several zones and the welding paths are planned. Then, the pose of the pipes is calculated based on the data measured by light section sensors. The planned paths are compensated by the pose. Finally, the robots weld studs based on the compensated paths.

Findings

The method effectively eliminates manufacturing errors and welding distortions. The system can weld straight type and L-type membrane walls with high efficiency, high quality and high accuracy.

Originality/value

The system can weld straight type and L-type membrane walls with high efficiency and high quality. Experiments were performed in a factory to demonstrate the practicability of the method. The dual-robot system with two welding machines has approximately twice the efficiency of the manual welder with only one welding machine. The quality and accuracy of robot welding systems are higher than that of manual welding.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2019

Canzhi Guo, Chunguang Xu, Dingguo Xiao, Hanming Zhang and Juan Hao

With the development of materials science and technology, composite workpieces are increasingly used. This paper aims to discuss a non-destructive testing (NDT) solution for…

Abstract

Purpose

With the development of materials science and technology, composite workpieces are increasingly used. This paper aims to discuss a non-destructive testing (NDT) solution for semi-enclosed composite workpieces. A dual-robot system with one robot that grips an irregular-shaped ultrasonic probe (tool) is established.

Design/methodology/approach

According to robotics, this paper defines the orientations of the discrete points coordinate frames in trajectory and proposes an orientation constraint rule between the tool coordinate frame and the scanning trajectory. A four-posture calibration method for calibrating the transformation relationship of the irregular-shaped tool frame relative to the robot flange frame is presented in detail.

Findings

Calibration and verification experiments were performed, and good-quality C-scan images were obtained by applying the constraint rule and the calibration method. Experimental results show that the calibration method used to determine the tool centre point (TCP) position is correct, effective and efficient; the TCP orientation constraint rule can ensure the extension pole of the irregular-shaped ultrasonic probe is parallel to the axis of the semi-enclosed cylindrical workpieces; and the ultrasonic transducer axis is perpendicular to the surface of the workpiece.

Originality/value

This paper proposes a constraint method for the posture of an irregular-shaped tool in this scheme. Theoretical foundations for the four-posture calibration method of the irregular-shaped tool for dual-robot-assisted ultrasonic NDT are presented in detail. This strategy has been successfully applied in the NDT experiment of semi-enclosed composite workpieces.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2003

Sheng‐Jen Hsieh

This paper describes the design and development of a re‐configurable dual‐robot assembly system using off‐the‐shelf re‐configurable pneumatic modules, Hall‐effect sensors, a…

Abstract

This paper describes the design and development of a re‐configurable dual‐robot assembly system using off‐the‐shelf re‐configurable pneumatic modules, Hall‐effect sensors, a vision system, and a programmable logic controller (PLC). Each robot arm consists of three sets of pneumatic modules and a pneumatic gripper. Each module consists of a pneumatic housing, an air cylinder, and a Hall‐effect sensor, and provides one degree of freedom. Solenoids are used to redirect airflow and thereby extend and/or retract the air cylinder. A vision system is used for fixture inspection. A conveyor and part stopper are designed to transfer and stop pallets. All these modules, the gripper, the part stopper, and the vision system are controlled and synchronized using a PLC. At the end of this paper, a framework for making the system over the Web for remote operation and diagnosis is proposed and described.

Details

Industrial Robot: An International Journal, vol. 30 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1986

Stephen McClelland examines what has enabled robot technology to become so suitable for board manufacture in a relatively short time span.

Abstract

Stephen McClelland examines what has enabled robot technology to become so suitable for board manufacture in a relatively short time span.

Details

Assembly Automation, vol. 6 no. 2
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 19 January 2015

Luo Yu, Jiao Xiangdong, Zhou Canfeng, Chen Jiaqing and Han Suxin

The aim of this study was to develop a new generation of automatic systems based on cutting-edge design and practical welding physics to minimize downtime caused by defects and…

Abstract

Purpose

The aim of this study was to develop a new generation of automatic systems based on cutting-edge design and practical welding physics to minimize downtime caused by defects and machine faults on the barges. Automatic welding has been used frequently on offshore pipeline projects.

Design/methodology/approach

An automated welding robot system for sub-sea pipeline installation was constructed. The system utilized the double-car double-torch welding, which is light-weight and compact, suited for offshore applications. Several state-of-the-art technologies were integrated into the control system design, including a heterogeneous network based on EtherCAT technology, network communications based on CANopen, motor synchronization, all-position welding, etc. In addition, the utilization of the CAN bus reduced the number of cable lines and increased the extensibility of the proposed welding robot system. An internal clamp with copper shoes assured a nice root weld and narrow bevel design and the welding efficiency was improved accordingly.

Findings

The trial was carried out to verify the rationality and effectiveness of the proposed automated system. The deposition rate of the backing welding could reach 17.78 kg/h; the average time for each welding was 340 s. This system was unique in that it features a dual-torch welding head that allowed for the deposition of one run with twice as much material as a single torch head. The experiment showed that the double-vehicle double-torch mode can greatly improve the welding efficiency of pipeline installation during the welding process.

Research limitations/implications

The automated welding robot system will be applied to offshore pipeline projects.

Originality/value

This robot is the first submarine pipeline installation welding robot to use a heterogeneous network based on EtherCAT technology. Various aspects of the submarine pipeline installation welding robot’s design and performance were discussed, including mechanical body design, control system design and welding process specification.

Details

Industrial Robot: An International Journal, vol. 42 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Yassine Bouteraa and Ismail Ben Abdallah

The idea is to exploit the natural stability and performance of the human arm during movement, execution and manipulation. The purpose of this paper is to remotely control a…

Abstract

Purpose

The idea is to exploit the natural stability and performance of the human arm during movement, execution and manipulation. The purpose of this paper is to remotely control a handling robot with a low cost but effective solution.

Design/methodology/approach

The developed approach is based on three different techniques to be able to ensure movement and pattern recognition of the operator’s arm as well as an effective control of the object manipulation task. In the first, the methodology works on the kinect-based gesture recognition of the operator’s arm. However, using only the vision-based approach for hand posture recognition cannot be the suitable solution mainly when the hand is occluded in such situations. The proposed approach supports the vision-based system by an electromyography (EMG)-based biofeedback system for posture recognition. Moreover, the novel approach appends to the vision system-based gesture control and the EMG-based posture recognition a force feedback to inform operator of the real grasping state.

Findings

The main finding is to have a robust method able to gesture-based control a robot manipulator during movement, manipulation and grasp. The proposed approach uses a real-time gesture control technique based on a kinect camera that can provide the exact position of each joint of the operator’s arm. The developed solution integrates also an EMG biofeedback and a force feedback in its control loop. In addition, the authors propose a high-friendly human-machine-interface (HMI) which allows user to control in real time a robotic arm. Robust trajectory tracking challenge has been solved by the implementation of the sliding mode controller. A fuzzy logic controller has been implemented to manage the grasping task based on the EMG signal. Experimental results have shown a high efficiency of the proposed approach.

Research limitations/implications

There are some constraints when applying the proposed method, such as the sensibility of the desired trajectory generated by the human arm even in case of random and unwanted movements. This can damage the manipulated object during the teleoperation process. In this case, such operator skills are highly required.

Practical implications

The developed control approach can be used in all applications, which require real-time human robot cooperation.

Originality/value

The main advantage of the developed approach is that it benefits at the same time of three various techniques: EMG biofeedback, vision-based system and haptic feedback. In such situation, using only vision-based approaches mainly for the hand postures recognition is not effective. Therefore, the recognition should be based on the biofeedback naturally generated by the muscles responsible of each posture. Moreover, the use of force sensor in closed-loop control scheme without operator intervention is ineffective in the special cases in which the manipulated objects vary in a wide range with different metallic characteristics. Therefore, the use of human-in-the-loop technique can imitate the natural human postures in the grasping task.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 55