Search results

1 – 10 of 158
Article
Publication date: 5 May 2020

Davood Darvishi Salookolaei and Seyed Hadi Nasseri

For extending the common definitions and concepts of grey system theory to the optimization subject, a dual problem is proposed for the primal grey linear programming problem.

Abstract

Purpose

For extending the common definitions and concepts of grey system theory to the optimization subject, a dual problem is proposed for the primal grey linear programming problem.

Design/methodology/approach

The authors discuss the solution concepts of primal and dual of grey linear programming problems without converting them to classical linear programming problems. A numerical example is provided to illustrate the theory developed.

Findings

By using arithmetic operations between interval grey numbers, the authors prove the complementary slackness theorem for grey linear programming problem and the associated dual problem.

Originality/value

Complementary slackness theorem for grey linear programming is first presented and proven. After that, a dual simplex method in grey environment is introduced and then some useful concepts are presented.

Details

Grey Systems: Theory and Application, vol. 10 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Book part
Publication date: 1 January 1991

Abstract

Details

Operations Research for Libraries and Information Agencies: Techniques for the Evaluation of Management Decision Alternatives
Type: Book
ISBN: 978-0-12424-520-4

Article
Publication date: 17 June 2020

Davood Darvishi, Sifeng Liu and Jeffrey Yi-Lin Forrest

The purpose of this paper is to survey and express the advantages and disadvantages of the existing approaches for solving grey linear programming in decision-making problems.

Abstract

Purpose

The purpose of this paper is to survey and express the advantages and disadvantages of the existing approaches for solving grey linear programming in decision-making problems.

Design/methodology/approach

After presenting the concepts of grey systems and grey numbers, this paper surveys existing approaches for solving grey linear programming problems and applications. Also, methods and approaches for solving grey linear programming are classified, and its advantages and disadvantages are expressed.

Findings

The progress of grey programming has been expressed from past to present. The main methods for solving the grey linear programming problem can be categorized as Best-Worst model, Confidence degree, Whitening parameters, Prediction model, Positioned solution, Genetic algorithm, Covered solution, Multi-objective, Simplex and dual theory methods. This survey investigates the developments of various solving grey programming methods and its applications.

Originality/value

Different methods for solving grey linear programming problems are presented, where each of them has disadvantages and advantages in providing results of grey linear programming problems. This study attempted to review papers published during 35 years (1985–2020) about grey linear programming solving and applications. The review also helps clarify the important advantages, disadvantages and distinctions between different approaches and algorithms such as weakness of solving linear programming with grey numbers in constraints, inappropriate results with the lower bound is greater than upper bound, out of feasible region solutions and so on.

Details

Grey Systems: Theory and Application, vol. 11 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 12 June 2009

Ralf Östermark

To discuss a new parallel algorithmic platform (minlp_machine) for complex mixed‐integer non‐linear programming (MINLP) problems.

Abstract

Purpose

To discuss a new parallel algorithmic platform (minlp_machine) for complex mixed‐integer non‐linear programming (MINLP) problems.

Design/methodology/approach

The platform combines features from classical non‐linear optimization methodology with novel innovations in computational techniques. The system constructs discrete search zones around noninteger discrete‐valued variables at local solutions, which simplifies the local optimization problems and reduces the search process significantly. In complicated problems fast feasibility restoration may be achieved through concentrated Hessians. The system is programmed in strict ANSI C and can be run either stand alone or as a support library for other programs. File I/O is designed to recognize possible usage in both single and parallel processor environments. The system has been tested on Alpha, Sun and Linux mainframes and parallel IBM and Cray XT4 supercomputer environments. The constrained problem can, for example, be solved through a sequence of first order Taylor approximations of the non‐linear constraints and feasibility restoration utilizing Hessian information of the Lagrangian of the MINLP problem, or by invoking a nonlinear solver like SQP directly in the branch and bound tree. minlp_machine( ) has been tested as a support library to genetic hybrid algorithm (GHA). The GHA(minlp_machine) platform can be used to accelerate the performance of any linear or non‐linear node solver. The paper introduces a novel multicomputer partitioning of the discrete search space of genuine MINLP‐problems.

Findings

The system is successfully tested on a small sample of representative MINLP problems. The paper demonstrates that – through concurrent nonlinear branch and bound search – minlp_machine( ) outperforms some recent competing approaches with respect to the number of nodes in the branch and bound tree. Through parallel processing, the computational complexity of the local optimization problems is reduced considerably, an important aspect for practical applications.

Originality/value

This paper shows that binary‐valued MINLP‐problems will reduce to a vector of ordinary non‐linear programming on a suitably sized mesh. Correspondingly, INLP‐ and ILP‐problems will require no quasi‐Newton steps or simplex iterations on a compatible mesh.

Details

Kybernetes, vol. 38 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 July 2003

Lixin Tao

In order to make a thorough inquiry into the criterion of optimal product structure in the micro‐economic system (enterprise), this paper has proposed and demonstrated the…

336

Abstract

In order to make a thorough inquiry into the criterion of optimal product structure in the micro‐economic system (enterprise), this paper has proposed and demonstrated the benefit‐type linear programming model, and based on it, the concepts of enterprise's product structure, feasible structure and optimal structure have been discussed and the criterion of optimal structure has been revealed. In this paper, the methods of simplex iteration and sensitivity analysis are both used to approach necessarily the adjustment of product structure under the circumstances of varied or invaried environment inside and outside the system, and as a final, it has come to a conclusion that the variation of resource price vector P would not affect the optimal product structure in enterprise, but the variation of resource‐constrained vector b will cause negative effects both on optimal product structure in enterprise and on determination of criterion for optimal structure.

Details

Kybernetes, vol. 32 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 8 May 2018

Mostafa Kheshti and Xiaoning Kang

Distribution network protection is a complicated problem and mal-operation of the protective relays due to false settings make the operation of the network unreliable. Besides…

Abstract

Purpose

Distribution network protection is a complicated problem and mal-operation of the protective relays due to false settings make the operation of the network unreliable. Besides, obtaining proper settings could be very complicated. This paper aims to discuss an innovative evolutionary Lightning Flash Algorithm (LFA) which is developed for solving the relay coordination problems in distribution networks. The proposed method is inspired from the movements of cloud to ground lightning strikes in a thunderstorm phenomenon. LFA is applied on three case study systems including ring, interconnected and radial distribution networks. The power flow analysis is performed in Digsilent Power Factory software; then the collected data are sent to MATLAB software for optimization process. The proposed algorithm provides optimum time multiplier setting and plug setting of all digital overcurrent relays in each system. The results are compared with other methods such as particle swarm optimization and genetic algorithm. The result comparisons demonstrate that the proposed LFA can successfully obtain proper relay settings in distribution networks with faster speed of convergence and lower total operation time of relays. Also, it shows the superiority and effectiveness of this method against other algorithms.

Design/methodology/approach

A novel LFA is designed based on the movements of cloud to ground lightning strikes in a thunderstorm. This method is used to optimally adjust the time multiplier setting and plug setting of the relays in distribution system to provide a proper coordination scheme.

Findings

The proposed algorithm was tested on three case study systems, and the results were compared with other methods. The results confirmed that the proposed method could optimally adjust the relay settings in the electric distribution system to provide a proper protection scheme.

Practical implications

The practical implications can be conducted on distribution networks. The studies provided in this paper approve the practical application of the proposed method in providing proper relay protection in real power system.

Originality/value

This paper proposes a new evolutionary method derived from the movements of cloud to ground lightning strikes in thunderstorm. The proposed method can be used as an optimization toolbox to solve complex optimization problems in practical engineering systems.

Article
Publication date: 1 February 1983

G.D. HACHTEL and S.W. DIRECTOR

Results are given which establish a computational foundation for simplicial approximation and design centering of a convex body. A simplicial polyhedron is used to approximate the…

Abstract

Results are given which establish a computational foundation for simplicial approximation and design centering of a convex body. A simplicial polyhedron is used to approximate the convex body and the “design center”, i.e. the point inside the body furthest in some norm from its exterior, is approximated by the point in the polyhedron furthest from its exterior. A point representation of the polyhedron is used, so that there is no necessity for computing or storing the faces of the approximation. Since in N space there can be factorially more faces than points, we are able to achieve significant efficiencies in both operation count and storage requirements, compared to previously reported methods. We give results for the 2 norm and the max norm, and demonstrate that our new method is operable in the nonconvex case, and can handle a mixed basis of faces and points as well.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 2 no. 2
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 June 1993

Choong Y. Lee

Suggests that, in recent years, remarkable progress has been madein the development of the topological design of logistics networks,especially in the warehouse location problem…

Abstract

Suggests that, in recent years, remarkable progress has been made in the development of the topological design of logistics networks, especially in the warehouse location problem. Extends the standard warehouse location problem to a generalization of multiproduct capacitated warehouse location problem, as opposed to differentiated variations of a single‐product warehouse location problem, where each warehouse has a given capacity for carrying each product. Presents an algorithm based on cross‐decomposition, to reduce the computational difficulty by incorporating Benders decomposition and Lagrangean relaxation. Computational results of this algorithm are encouraging.

Details

International Journal of Physical Distribution & Logistics Management, vol. 23 no. 6
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 6 July 2022

Pouyan Mahdavi-Roshan and Seyed Meysam Mousavi

Most projects are facing delays, and accelerating the pace of project progress is a necessity. Project managers are responsible for completing the project on time with minimum…

Abstract

Purpose

Most projects are facing delays, and accelerating the pace of project progress is a necessity. Project managers are responsible for completing the project on time with minimum cost and with maximum quality. This study provides a trade-off between time, cost, and quality objectives to optimize project scheduling.

Design/methodology/approach

The current paper presents a new resource-constrained multi-mode time–cost–quality trade-off project scheduling model with lags under finish-to-start relations. To be more realistic, crashing and overlapping techniques are utilized. To handle uncertainty, which is a source of project complexity, interval-valued fuzzy sets are adopted on several parameters. In addition, a new hybrid solution approach is developed to cope with interval-valued fuzzy mathematical model that is based on different alpha-levels and compensatory methods. To find the compatible solution among conflicting objectives, an arithmetical average method is provided as a compensatory approach.

Findings

The interval-valued fuzzy sets approach proposed in this paper is denoted to be scalable, efficient, generalizable and practical in project environments. The results demonstrated that the crashing and overlapping techniques improve time–cost–quality trade-off project scheduling model. Also, interval-valued fuzzy sets can properly manage expressions of the uncertainty of projects which are realistic and practical. The proposed mathematical model is validated by solving a medium-sized dataset an adopted case study. In addition, with a sensitivity analysis approach, the solutions are compared and the model performance is confirmed.

Originality/value

This paper introduces a new continuous-based, resource-constrained, and multi-mode model with crashing and overlapping techniques simultaneously. In addition, a new hybrid compensatory solution approach is extended based on different alpha-levels to handle interval-valued fuzzy multi-objective mathematical model of project scheduling with influential uncertain parameters.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 June 2007

B. Auchmann and S. Kurz

To describe and extend existing concepts of discrete electromagnetism in a unified formalism; to give examples for the usefulness of the presented ideas for our theoretical work…

Abstract

Purpose

To describe and extend existing concepts of discrete electromagnetism in a unified formalism; to give examples for the usefulness of the presented ideas for our theoretical work, especially with regard to energy.

Design/methodology/approach

After a concise introduction to the mathematical concepts of discrete electromagnetism, we introduce continuous de Rham currents and give their discrete counterpart. We define operators acting upon discrete currents, and apply the theory to electromagnetism.

Findings

de Rham current theory yields a mathematical framework for the discussion of discrete electromagnetic problems: The focus is on energy‐balance equations; a discrete Lagrangian can be defined for various modeling problems; the Galerkin approach fits nicely into the proposed formalism; boundary terms in discrete formulations are an implicit feature to the theory.

Research limitations/implications

In this paper, we use the interpolation of discrete fields by Whitney forms on a simplicial cell complex. The resulting discrete formulation is identical to a Galerkin finite‐element method. Other numerical techniques that do not resort to Whitney‐form interpolation can equally be discussed in de Rham‐current terminology.

Originality/value

Rather than a novel numerical technique, the paper presents a unified mathematical framework for the discussion of different practical approaches. We advocate a canonical treatment of energy‐related quantities and of boundary terms in discrete formulations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 158