Search results

1 – 10 of 47
Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 6 November 2023

Thiago Galdino Balista, Carlos Friedrich Loeffler, Luciano Lara and Webe João Mansur

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All…

Abstract

Purpose

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All techniques transform domain integrals into boundary integrals, despite using different principles to reach this purpose.

Design/methodology/approach

Comparisons here performed include the solution of eigenvalue and response by frequency scanning, analyzing many features that are not comprehensively discussed in the literature, as follows: the type of boundary conditions, suitable number of degrees of freedom, modal content, number of primitives in the multiple reciprocity method (MRM) and the requirement of internal interpolation points in techniques that use radial basis functions as dual reciprocity and direct interpolation.

Findings

Among the other aspects, this work can conclude that the solution of the eigenvalue and response problems confirmed the reasonable accuracy of the dual reciprocity boundary element method (DRBEM) only for the calculation of the first natural frequencies. Concerning the direct interpolation boundary element method (DIBEM), its interpolation characteristic allows more accessibility for solving more elaborate problems. Despite requiring a greater number of interpolating internal points, the DIBEM has presented higher-quality results for the eigenvalue and response problems. The MRM results were satisfactory in terms of accuracy just for the low range of frequencies; however, the neglected higher-order primitives impact the accuracy of the dynamic response as a whole.

Originality/value

There are safe alternatives for solving engineering stationary dynamic problems using the boundary element method (BEM), but there are no suitable comparisons between these different techniques. This paper presents the particularities and detailed comparisons approaching the accuracy of the three important BEM techniques, aiming at response and frequency evaluation, which are not found in the specialized literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 March 2023

Jordi Vila-Pérez, Matteo Giacomini and Antonio Huerta

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using…

Abstract

Purpose

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks.

Design/methodology/approach

The work presents a detailed comparison with reference solutions published in the literature –when available– and numerical results computed using a commercial cell-centred finite volume software.

Findings

The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%.

Originality/value

The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2023

Yinkai Niu, Heyun Bao, Wei Huang, Wuzhong Tan and Rupeng Zhu

During the operation of a wet clutch, there are fluctuations in speed and torque, which have an impact on the stability of the clutch and the strength of the friction plate and…

98

Abstract

Purpose

During the operation of a wet clutch, there are fluctuations in speed and torque, which have an impact on the stability of the clutch and the strength of the friction plate and the spline pair of the dual steel plate. The purpose of this study is to investigate the vibration characteristics of the wet clutch and the dynamic load characteristics of the spline pairs.

Design/methodology/approach

The spline pair model is established by the piecewise linear function method, and on this basis, dynamic equations considering the spline pair of dual steel plates and friction plates are established. Considering that the wet clutch has multiple spline pairs, an equivalent model of the number of teeth and the equivalent model of the tooth width were proposed, and the Runge-Kutta numerical method was used for the wet clutch for these two models.

Findings

The research results show that the equal tooth number model has greater meshing stiffness and smaller fluctuation than the constant tooth width model, which shows that increasing the meshing stiffness of the system is beneficial to reduce system fluctuation and improve system stability.

Research limitations/implications

The friction plate has the system that multiple splines are independent of each other, which is relatively complicated. Therefore, an equivalent calculation is performed on multiple pairs of steel plates (friction plates) to simplify the calculation of the spline pairs.

Social implications

This paper provides a theoretical basis for further dynamic characteristics analysis of wet clutch and reducing fluctuation of speed and torque.

Originality/value

Dynamic equation considering the spline pair of the dual steel plates and the friction plates is established to study the vibration characteristics of the wet clutch and the dynamic load characteristics of the spline pair, etc.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0078/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2023

Madhuchhanda Bhattacharya and Tanmay Basak

A few earlier studies presented infeasible heatline trajectories for natural convection within annular domains involving an inner circular cylinder and outer square/circular…

Abstract

Purpose

A few earlier studies presented infeasible heatline trajectories for natural convection within annular domains involving an inner circular cylinder and outer square/circular enclosure. The purpose of this paper is to revisit and illustrate the correct heatline trajectories for various test cases.

Design/methodology/approach

Galerkin finite element based methodology and space adaptive grid have been used to simulate natural convective flows within the annular domains. The prediction of heatlines involves derivatives at the nodes, which are evaluated based on finite element basis functions and contributions from neighboring elements.

Findings

The heatlines in the earlier work indicate infeasible heat flow paths such as heat flow from one portion to the other of isothermal hot walls and heat flow across the adiabatic walls. Current results illustrate physically consistent heat flow paths involving perpendicularly emerging heatlines from hot to cold walls for conductive transport, long heat flow paths around the closed-loop heatline cells for convective transport and parallel layout of heatlines to the adiabatic walls. Results also demonstrate complex heatlines involving multiple flow vortices and complex flow structures.

Originality/value

Current work translates heatfunctions from energy flux vectors, which are determined by using basis sets. This work demonstrates the expected heatline trajectories for various scenarios involving conductive and convective heat transport within enclosures with an inner hot object as a first attempt, and the results are precursors for the understanding of energy flow estimates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 May 2023

Everton Boos, Fermín S.V. Bazán and Vanda M. Luchesi

This paper aims to reconstruct the spatially varying orthotropic conductivity based on a two-dimensional inverse heat conduction problem described by a partial differential…

23

Abstract

Purpose

This paper aims to reconstruct the spatially varying orthotropic conductivity based on a two-dimensional inverse heat conduction problem described by a partial differential equation (PDE) model with mixed boundary conditions. The proposed discretization uses a highly accurate technique and allows simple implementations. Also, the authors solve the related inverse problem in such a way that smoothness is enforced on the iterations, showing promising results in synthetic examples and real problems with moving heat source.

Design/methodology/approach

The discretization procedure applied to the model for the direct problem uses a pseudospectral collocation strategy in the spatial variables and Crank–Nicolson method for the time-dependent variable. Then, the related inverse problem of recovering the conductivity from temperature measurements is solved by a modified version of Levenberg–Marquardt method (LMM) which uses singular scaling matrices. Problems where data availability is limited are also considered, motivated by a face milling operation problem. Numerical examples are presented to indicate the accuracy and efficiency of the proposed method.

Findings

The paper presents a discretization for the PDEs model aiming on simple implementations and numerical performance. The modified version of LMM introduced using singular scaling matrices shows the capabilities on recovering quantities with precision at a low number of iterations. Numerical results showed good fit between exact and approximate solutions for synthetic noisy data and quite acceptable inverse solutions when experimental data are inverted.

Originality/value

The paper is significant because of the pseudospectral approach, known for its high precision and easy implementation, and usage of singular regularization matrices on LMM iterations, unlike classic implementations of the method, impacting positively on the reconstruction process.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 June 2023

Chongbin Zhao, B.E. Hobbs and Alison Ord

The objective of this paper is to establish a solution strategy for obtaining dual solutions, namely trivial (conventional) and nontrivial (unconventional) solutions, of coupled…

Abstract

Purpose

The objective of this paper is to establish a solution strategy for obtaining dual solutions, namely trivial (conventional) and nontrivial (unconventional) solutions, of coupled pore-fluid flow and chemical dissolution problems in heterogeneous porous media.

Design/methodology/approach

Through applying a perturbation to the pore-fluid velocity, original governing partial differential equations of a coupled pore-fluid flow and chemical dissolution problem in heterogeneous porous media are transformed into perturbed ones, which are then solved by using the semi-analytical finite element method. Through switching off and on the applied perturbation terms in the resulting perturbed governing partial differential equations, both the trivial and nontrivial solutions can be obtained for the original governing partial differential equations of the coupled pore-fluid flow and chemical dissolution problem in fluid-saturated heterogeneous porous media.

Findings

When a coupled pore-fluid flow and chemical dissolution system is in a stable state, the trivial and nontrivial solutions of the system are identical. However, if a coupled pore-fluid flow and chemical dissolution system is in an unstable state, then the trivial and nontrivial solutions of the system are totally different. This recognition can be equally used to judge whether a coupled pore-fluid flow and chemical dissolution system involving heterogeneous porous media is in a stable state or in an unstable state. The proposed solution strategy can produce dual solutions for simulating coupled pore-fluid flow and chemical dissolution problems in fluid-saturated heterogeneous porous media.

Originality/value

A solution strategy is proposed to obtain the nontrivial solution, which is often overlooked in the computational simulation of coupled pore-fluid flow and chemical dissolution problems in fluid-saturated heterogeneous porous media. The proposed solution strategy provides a useful way for understanding the underlying dynamic mechanisms of the chemical damage effect associated with the stability of structures that are built on soil foundations.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2023

Ning Zhang, Hong Zheng, Chi Yuan and Wenan Wu

This article aims to present a direct solution to handle linear constraints in finite element (FE) analysis without penalties or the Lagrange multipliers introduced.

Abstract

Purpose

This article aims to present a direct solution to handle linear constraints in finite element (FE) analysis without penalties or the Lagrange multipliers introduced.

Design/methodology/approach

First, the system of linear equations corresponding to the linear constraints is solved for the leading variables in terms of the free variables and the constants. Then, the reduced system of equilibrium equations with respect to the free variables is derived from the finite-dimensional virtual work equation. Finally, the algorithm is designed.

Findings

The proposed procedure is promising in three typical cases: (1) to enforce displacement constraints in any direction; (2) to implement local refinements by allowing hanging nodes from element subdivision and (3) to treat non-matching grids of distinct parts of the problem domain. The procedure is general and suitable for 3D non-linear analyses.

Research limitations/implications

The algorithm is fitted only to the Galerkin-based numerical methods.

Originality/value

The proposed procedure does not need Lagrange multipliers or penalties. The tangential stiffness matrix of the reduced system of equilibrium equations reserves positive definiteness and symmetry. Besides, many contemporary Galerkin-based numerical methods need to tackle the enforcement of the essential conditions, whose weak forms reduce to linear constraints. As a result, the proposed procedure is quite promising.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 November 2023

Behrooz Ariannezhad, Shahram Shahrooi and Mohammad Shishesaz

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO…

Abstract

Purpose

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO) optimization algorithms and Voronoi computational geometric algorithm. (3). Selection of base functions, finding optimal penalty factor and distribution of appropriate nodal points to the accuracy of calculation in the meshless local Petrov–Galekrin (MLPG) meshless method.

Design/methodology/approach

Using appropriate shape functions and distribution of nodal points in local domains and sub-domains and choosing an approximation or interpolation method has an effective role in the application of meshless methods for the analysis of computational fracture mechanics problems, especially problems with geometric discontinuity and cracks. In this research, computational geometry technique, based on the Voronoi diagram (VD) and Delaunay triangulation and PSO algorithm, are used to distribute nodal points in the sub-domain of analysis (crack line and around it on the crack plane).

Findings

By doing this process, the problems caused by too closeness of nodal points in computationally sensitive areas that exist in general methods of nodal point distribution are also solved. Comparing the effect of the number of sentences of basic functions and their order in the definition of shape functions, performing the mono-objective PSO algorithm to find the penalty factor, the coefficient, convergence, arrangement of nodal points during the three stages of VD implementation and the accuracy of the answers found indicates, the efficiency of V-E-MLPG method with Ns = 7 and ß = 0.0037–0.0075 to estimation of 3D-stress intensity factors (3D-SIFs) in computational fracture mechanics.

Originality/value

The present manuscript is a continuation of the studies (Ref. [33]) carried out by the authors, about; feasibility assessment, improvement and solution of challenges, introduction of more capacities and capabilities of the numerical MLPG method have been used. In order to validate the modeling and accuracy of calculations, the results have been compared with the findings of reference article [34] and [35].

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 April 2024

Jorge Morvan Marotte Luz Filho and Antonio Andre Novotny

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations…

Abstract

Purpose

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.

Design/methodology/approach

In order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.

Findings

A novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.

Originality/value

An alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 47