Search results

1 – 10 of 248
Article
Publication date: 29 September 2023

Akinade Adebowale Adewojo, Aderinola Ololade Dunmade and Adetola Adebisi Akanbiemu

This study aims to explore the potential use of drones in special library services, aiming to enhance accessibility, services and reliability. It examines how drones can provide…

109

Abstract

Purpose

This study aims to explore the potential use of drones in special library services, aiming to enhance accessibility, services and reliability. It examines how drones can provide library materials to individuals unable to access traditional services and addresses challenges associated with drone implementation.

Design/methodology/approach

This study involves a literature review and case studies to analyze the feasibility and benefits of incorporating drones into special libraries. This study also discusses the synergy between drone technology and artificial intelligence (AI) in enhancing library operations.

Findings

Drones have the potential to transform special libraries by automating tasks, improving efficiency and expanding outreach. Their application ranges from inventory management and book retrieval to security, surveillance and outreach initiatives. AI-powered drones can provide real-time data on library usage and enhance cost-effectiveness. However, challenges including costs, privacy concerns and regulatory frameworks need to be addressed.

Originality/value

The integration of drones and AI in special library services presents a novel approach to revolutionizing library operations. This study uniquely combines these technologies, emphasizing the importance of proactive consideration of challenges and prospects for successful implementation.

Details

Library Hi Tech News, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0741-9058

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

171

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

22

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 9 January 2024

Srividhya Raju Sridharan, Sagar Malsane and Govinda Shashikant Bhutada

The purpose of the paper is to analyse the sequence of forces acting as barriers in the usage of drones in the construction industry using interpretive structural modelling (ISM)…

Abstract

Purpose

The purpose of the paper is to analyse the sequence of forces acting as barriers in the usage of drones in the construction industry using interpretive structural modelling (ISM). The usage of drones in the construction industry is brought out phase-wise with the help of literature and live cases. Barriers to the usage of drones in construction and steps to derive the interaction between them are described in detail.

Design/methodology/approach

The extraction of barriers to the usage of drones in construction is done through cases and supported by the literature. The identification of the interaction between the barriers is done through multi-criteria decision models, namely, ISM and Matriced Impacts Croises Multiplication Appliquee a un Classement (MICMAC) and the results are presented in the form of a hierarchical structure. The paper highlights the potential for the usage of drones in every phase of construction across three stages of construction and eight different applications.

Findings

The findings on the interaction between barriers show that technical and research and development-related barriers have a higher driving power, ultimately influencing negativity among stakeholders in drone usage for construction. By analysing interrelationships between barriers, management can frame suitable strategies to adopt drone usage in projects. Awareness about the strength of certain barriers can help management take steps to mitigate the same.

Research limitations/implications

By analysing interrelationships between barriers, management can frame suitable strategies to adopt drone usage in projects. A major limitation is a restriction of the study area to the Indian subcontinent. However, the authors believe that the results can be applied across countries where drone technology is at the nascent stage.

Practical implications

Awareness about the strength of certain barriers can help stakeholders take steps to mitigate the same.

Social implications

The results of this research also give some inputs to the government’s drone policy for wider usage of drones in the construction industry.

Originality/value

To the best of the authors’ knowledge, most studies on drones in construction industry bring out a list various challenges to their adoption. In this study, the authors have gone further to perform a hierarchical sequencing of barriers to drone adoption based on challenges faced in an emerging economy like India.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 November 2023

Kamran Mahroof, Amizan Omar, Emilia Vann Yaroson, Samaila Ado Tenebe, Nripendra P. Rana, Uthayasankar Sivarajah and Vishanth Weerakkody

The purpose of this study is to evaluate food supply chain stakeholders’ intention to use Industry 5.0 (I5.0) drones for cleaner production in food supply chains.

Abstract

Purpose

The purpose of this study is to evaluate food supply chain stakeholders’ intention to use Industry 5.0 (I5.0) drones for cleaner production in food supply chains.

Design/methodology/approach

The authors used a quantitative research design and collected data using an online survey administered to a sample of 264 food supply chain stakeholders in Nigeria. The partial least square structural equation model was conducted to assess the research’s hypothesised relationships.

Findings

The authors provide empirical evidence to support the contributions of I5.0 drones for cleaner production. The findings showed that food supply chain stakeholders are more concerned with the use of I5.0 drones in specific operations, such as reducing plant diseases, which invariably enhances cleaner production. However, there is less inclination to drone adoption if the aim was pollution reduction, predicting seasonal output and addressing workers’ health and safety challenges. The findings outline the need for awareness to promote the use of drones for addressing workers’ hazard challenges and knowledge transfer on the potentials of I5.0 in emerging economies.

Originality/value

To the best of the authors’ knowledge, this study is the first to address I5.0 drones’ adoption using a sustainability model. The authors contribute to existing literature by extending the sustainability model to identify the contributions of drone use in promoting cleaner production through addressing specific system operations. This study addresses the gap by augmenting a sustainability model, suggesting that technology adoption for sustainability is motivated by curbing challenges categorised as drivers and mediators.

Details

Supply Chain Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-8546

Keywords

Article
Publication date: 18 September 2023

Kian Yeik Koay and Mei Kei Leong

The purpose of this study is to examine the factors influencing consumers' intentions to use drone food delivery services from the perspective of the theory of consumption values…

Abstract

Purpose

The purpose of this study is to examine the factors influencing consumers' intentions to use drone food delivery services from the perspective of the theory of consumption values (TCV).

Design/methodology/approach

Data collection involves the utilisation of self-administered questionnaires. Subsequently, 305 data were gathered from Malaysian consumers and subjected to analysis through partial least squares structural equation modelling (PLS-SEM).

Findings

This study demonstrated that functional, social, emotional and epistemic values, as well as personal innovativeness, can strongly predict intentions. However, neither the conditional value nor environmental concerns were significant predictors of intentions.

Originality/value

The study is the first of its kind to use the TCV from the perspective of a developing country to understand consumers' intentions to use drone food delivery services.

Details

Asia-Pacific Journal of Business Administration, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-4323

Keywords

Article
Publication date: 23 November 2023

Luciano de Brito Staffa Junior, Dayana Bastos Costa, João Lucas Torres Nogueira and Alisson Souza Silva

This work aims to develop a web platform for inspecting roof structures for technical assistance supported by drones and artificial intelligence. The tools used were HTML, CSS and…

82

Abstract

Purpose

This work aims to develop a web platform for inspecting roof structures for technical assistance supported by drones and artificial intelligence. The tools used were HTML, CSS and JavaScript languages; Firebase software for infrastructure; and Custom Vision for image processing.

Design/methodology/approach

This study adopted the design science research approach, and the main stages for the development of the web platform include (1) creation and validation of the roof inspection checklist, (2) validation of the use of Custom Vision as an image recognition tool, and (3) development of the web platform.

Findings

The results of automatic recognition showed a percentage of 77.08% accuracy in identifying pathologies in roof images obtained by drones for technical assistance.

Originality/value

This study contributed to developing a drone-integrated roof platform for visual data collection and artificial intelligence for automatic recognition of pathologies, enabling greater efficiency and agility in the collection, processing and analysis of results to guarantee the durability of the building.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 20 October 2023

Marisol S. Romero-Mancilla, Kenneth E. Hernandez-Ruiz and Diana L. Huerta-Muñoz

The purpose of this paper is to introduce a three-echelon multimodal transportation problem applied to a humanitarian logistic case study that occurred in Mexico.

Abstract

Purpose

The purpose of this paper is to introduce a three-echelon multimodal transportation problem applied to a humanitarian logistic case study that occurred in Mexico.

Design/methodology/approach

This study develops a methodology combining a transshipment problem and an adaptation of the multidepot heterogeneous fleet vehicle routing problem to construct a mathematical model that incorporates the use of land-based vehicles and drones. The model was applied to the case study of the Earthquake on September 19, 2017, in Mexico, using the Gurobi optimization solver.

Findings

The results ratified the relevance of the study, showing an inverse relationship between transportation costs and delivery time; on the flip side, the model performed in a shorter CPU time with medium and small instances than with large instances.

Research limitations/implications

While the size of the instances limits the use of the model for big-scale problems, this approach manages to provide a good representation of a transportation network during a natural disaster using drones in the last-mile deliveries.

Originality/value

The present study contributes to a model that combines a vehicle routing problem with transshipment, multiple depots and a heterogeneous fleet including land-based vehicles and drones. There are multiple models present in the literature for these types of problems that incorporate the use of these transportation modes; however, to the best of the authors’ knowledge, there are still no proposals similar to this study.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 28 February 2023

Xiaowei Wang, Yang Yang, Albert P.C. Chan, Hung-lin Chi and Esther H.K. Yung

With the increasing use of small unmanned aircrafts (SUAs), many countries have enacted laws and regulations to ensure the safe use of SUAs. However, there is a lack of…

Abstract

Purpose

With the increasing use of small unmanned aircrafts (SUAs), many countries have enacted laws and regulations to ensure the safe use of SUAs. However, there is a lack of industry-specific regulations accounting for the unique features of construction-related SUA operations. Operating SUAs in the construction industry is attributed to specific risks and challenges, which should be regulated to maximize the utility of SUAs in construction. This study, therefore, aims to develop a multi-dimensional regulatory framework for using SUAs in the construction industry.

Design/methodology/approach

A combination of quantitative and qualitative methods was used to compare seven selected national/regional SUA regulations to identify the applicability of implementing the existing regulations in construction. The interview surveys were then conducted to diagnose the challenges of construction-related SUA operations and gather interviewees' suggestions on the regulatory framework for SUA uses in construction.

Findings

The research found that some challenges of construction-related SUAs operations were not addressed in the current regulations. These challenges included the complex and time-consuming SUA operation permit, lack of regulation for special SUA operations in construction, insufficient regulatory compliance monitoring and a lack of construction-related remote pilots' training. A regulatory framework was then developed based on the findings of comparative analysis and interview surveys.

Research limitations/implications

This study mainly compared seven representative countries/regions' regulations, leading to a small sample size. Further research should be carried out to study the SUA regulations in other places, such as South Africa, South America or Middle East countries. Besides, this study's respondents to the interviews were primarily concentrated in Hong Kong, which may cause the interview results to differ from the construction industry in other countries/regions. A large-scale interview survey should be conducted in other places in the future to validate the current findings.

Practical implications

The proposed regulatory framework provides a reference for the policy-makers to formulate appropriate industry-specific SUA regulations and improve the applicability of SUA regulations in the construction industry. It sheds light upon the future of SUA regulations and the development of regulatory practice in this area.

Originality/value

This study is the first to propose a multi-dimensional regulatory framework for operating SUAs in construction by comprehensive policy comparisons and interviews. The regulatory framework offers a fresh insight into the unexplored research area and points out the direction for subsequent studies on SUA regulations in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 248