Search results

1 – 10 of 463
Article
Publication date: 9 June 2021

Md Nazmus Sakib, Theodora Chaspari and Amir H. Behzadan

As drones are rapidly transforming tasks such as mapping and surveying, safety inspection and progress monitoring, human operators continue to play a critical role in ensuring…

Abstract

Purpose

As drones are rapidly transforming tasks such as mapping and surveying, safety inspection and progress monitoring, human operators continue to play a critical role in ensuring safe drone missions in compliance with safety regulations and standard operating procedures. Research shows that operator's stress and fatigue are leading causes of drone accidents. Building upon the authors’ past work, this study presents a systematic approach to predicting impending drone accidents using data that capture the drone operator's physiological state preceding the accident.

Design/methodology/approach

The authors collect physiological data from 25 participants in real-world and virtual reality flight experiments to design a feedforward neural network (FNN) with back propagation. Four time series signals, namely electrodermal activity (EDA), skin temperature (ST), electrocardiogram (ECG) and heart rate (HR), are selected, filtered for noise and used to extract 92 time- and frequency-domain features. The FNN is trained with data from a window of length t = 3…8 s to predict accidents in the next p = 3…8 s.

Findings

Analysis of model performance in all 36 combinations of analysis window (t) and prediction horizon (p) combinations reveals that the FNN trained with 8 s of physiological signal (i.e. t = 8) to predict drone accidents in the next 6 s (i.e. p = 6) achieved the highest F1-score of 0.81 and AP of 0.71 after feature selection and data balancing.

Originality/value

The safety and integrity of collaborative human–machine systems (e.g. remotely operated drones) rely on not only the attributes of the human operator or the machinery but also how one perceives the other and adopts to the evolving nature of the operational environment. This study is a first systematic attempt at objective prediction of potential drone accident events from operator's physiological data in (near-) real time. Findings will lay the foundation for creating automated intervention systems for drone operations, ultimately leading to safer jobsites.

Details

Smart and Sustainable Built Environment, vol. 11 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 30 June 2021

Oualid Araar, Kheireddine Benjdia and Ivan Vitanov

The widespread use of drones among the general public has led to an alarming increase in accidents, some with lethal consequences. As drone blades are made from rigid materials…

Abstract

Purpose

The widespread use of drones among the general public has led to an alarming increase in accidents, some with lethal consequences. As drone blades are made from rigid materials and rotate at very high speeds, their impact with a human body can result in fatal injuries. Reliable collision detection combined with near-instantaneous braking of the drone’s rotor(s) can substantially lessen the severity of injuries sustained. The purpose of this paper is to achieve a safety solution which can be easily integrated into new products, or retrofitted into existing systems.

Design/methodology/approach

Through a proof of concept, this paper demonstrates the possibility of detecting a collision with a drone propeller absent any hardware modifications to the drone’s instrumentation. The solution relies on current-sensor readings, ordinarily used for monitoring the battery status of electrically actuated drones. The braking is achieved purely by reconfiguring the motor’s control strategy, without the need for additional hardware, as has been the case in previous works.

Findings

This paper demonstrates the possibility of detecting a collision with a drone propeller absent any hardware modifications to the drone’s instrumentation.

Originality/value

Compared to previous works which require installing additional hardware, the solution is purely software. This makes it very easy to integrate into existing systems or new products, at no additional cost. In experiments conducted on a prototype system, the solution was shown capable of detecting a collision and braking the motor in fewer than 20 ms. This allowed attenuating centimetre-deep cuts made to a piece of meat by an unprotected rotor to mere superficial scratches.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 April 2021

Ricardo Eiris, Gilles Albeaino, Masoud Gheisari, William Benda and Randi Faris

The purpose of this research is to explore how to visually represent human decision-making processes during the performance of indoor building inspection flight operations using…

334

Abstract

Purpose

The purpose of this research is to explore how to visually represent human decision-making processes during the performance of indoor building inspection flight operations using drones.

Design/methodology/approach

Data from expert pilots were collected using a virtual reality drone flight simulator. The expert pilot data were studied to inform the development of an interactive 2D representation of drone flight spatial and temporal data – InDrone. Within the InDrone platform, expert pilot data were visually encoded to characterize key pilot behaviors in terms of pilots' approaches to view and difficulties encountered while detecting the inspection markers. The InDrone platform was evaluated using a user-center experimental methodology focusing on two metrics: (1) how novice pilots understood the flight approaches and difficulties contained within InDrone and (2) the perceived usability of the InDrone platform.

Findings

The results of the study indicated that novice pilots recognized inspection markers and difficult-to-inspect building areas in 63% (STD = 48%) and 75% (STD = 35%) of the time on average, respectively. Overall, the usability of InDrone presented high scores as demonstrated by the novice pilots during the flight pattern recognition tasks with a mean score of 77% (STD = 15%).

Originality/value

This research contributes to the definition of visual affordances that support the communication of human decision-making during drone indoor building inspection flight operations. The developed InDrone platform highlights the necessity of defining visual affordances to explore drone flight spatial and temporal data for indoor building inspections.

Details

Smart and Sustainable Built Environment, vol. 10 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 13 September 2022

Mariusz Szóstak, Tomasz Nowobilski, Abdul-Majeed Mahamadu and David Caparrós Pérez

Unmanned aerial vehicles (UAV), colloquially called drones, are widely applied in many sectors of the economy, including the construction industry. They are used for building…

1617

Abstract

Purpose

Unmanned aerial vehicles (UAV), colloquially called drones, are widely applied in many sectors of the economy, including the construction industry. They are used for building inspections, damage assessment, land measurements, safety inspections, monitoring the progress of works, and others.

Design/methodology/approach

The study notes that UAV pose new, and not yet present, risks in the construction industry. New threats arise, among others, from the development of new technologies, as well as from the continuous automation and robotization of the construction industry. Education regarding the safe use of UAV and the proper use of drones has a chance to improve the safety of work when using these devices.

Findings

The procedure (protocol) was developed for the correct and safe preparation and planning of an unmanned aerial vehicle flight during construction operations.

Originality/value

Based on the analysis of available sources, no such complete procedure has yet been developed for the correct, i.e. compliant with applicable legal regulations and occupational health and safety issues, preparation for flying UAV. The verification and validation of the developed flight protocol was performed on a sample of over 100 different flight operations.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 13 April 2023

Sadia Samar Ali, Shahbaz Khan, Nosheen Fatma, Cenap Ozel and Aftab Hussain

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this…

Abstract

Purpose

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this context, drones have the potential to change many industries by making operations more efficient, safer and more economic. Therefore, this study investigates the use of drones as the next step in smart/digital warehouse management to determine their socio-economic benefits.

Design/methodology/approach

The study identifies various enablers impacting drone applications to improve inventory management, intra-logistics, inspections and surveillance in smart warehouses through a literature review, a test of concordance and the fuzzy Delphi method. Further, the graph theory matrix approach (GTMA) method was applied to ranking the enablers of drone application in smart/digital warehouses. In the subsequent phase, researchers investigated the relation between the drone application's performance and the enablers of drone adoption using logistic regression analysis under the TOE framework.

Findings

This study identifies inventory man agement, intra-logistics, inspections and surveillance are three major applications of drones in the smart warehousing. Further, nine enablers are identified for the adoption of drone in warehouse management. The findings suggest that operational effectiveness, compatibility of drone integration and quality/value offered are the most impactful enablers of drone adoption in warehouses. The logistic regression findings are useful for warehouse managers who are planning to adopt drones in a warehouse for efficient operations.

Research limitations/implications

This study identifies the enablers of drone adoption in the smart and digital warehouse through the literature review and fuzzy Delphi. Therefore, some enablers may be overlooked during the identification process. In addition to this, the analysis is based on the opinion of the expert which might be influenced by their field of expertise.

Practical implications

By considering technology-organisation-environment (TOE) framework warehousing companies identify the opportunities and challenges associated with using drones in a smart warehouse and develop strategies to integrate drones into their operations effectively.

Originality/value

This study proposes a TOE-based framework for the adoption of drones in warehouse management to improve the three prominent warehouse functions inventory management, intra-logistics, inspections and surveillance using the mixed-method.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 26 December 2023

Sachin Kumar, Bhagwan Singh, Vinod Kumar, Ranjan Chaudhuri, Sheshadri Chatterjee and Demetris Vrontis

The present study intends to discover and analyze the determinants of users' intention to use (ITU) drone-based online food delivery (OFD) services. The study mainly focuses on…

Abstract

Purpose

The present study intends to discover and analyze the determinants of users' intention to use (ITU) drone-based online food delivery (OFD) services. The study mainly focuses on the drone-based food delivery system in India and its implications.

Design/methodology/approach

This study has used the purposive sampling method. With the support of the technology acceptance model (TAM) and the theory of planned behavior (TPB), a theoretical model was developed conceptually. Later, the model was validated using the partial least square-structure equation modeling (PLS-SEM) technique with consideration of 324 responses mainly from university students in Delhi- National Capital Region (NCR).

Findings

The findings reveal that all the determinants are positively and significantly related to ITU, except for perceived behavioral control that does not influence the consumer’s ITU drone-based OFD services. The study also shows that how food delivery system through drone can revolutionize the entire food delivery system in India.

Research limitations/implications

The present study has developed a unique model that can be used by practitioners, future researchers in this field and policymakers in government departments. The present study is limited to Delhi-NCR in India, and thus, there is an issue of generalizability in the present study.

Practical implications

This study has examined the future of food delivery system through drone-based system. Thus, the leaders in the food industry will be better positioned to understand consumers' intentions to use OFD services using drones and be able to make more informed decisions about investment in drone technology in their respective organizations.

Originality/value

The present study has combined both the technology adoption model and the TPB and developed a theoretical model. The study enriches the literature on drone-based OFD services. Since users' acceptance of OFD services using drones is an under-researched area, the present study will make a meaningful contribution to bring the body of literature in this domain.

Details

British Food Journal, vol. 126 no. 3
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 19 August 2021

Gilles Albeaino, Ricardo Eiris, Masoud Gheisari and Raja Raymond Issa

This study aims to explore DroneSim, a virtual reality (VR)-based flight training simulator, as an alternative for real-world drone-mediated building inspection training.

Abstract

Purpose

This study aims to explore DroneSim, a virtual reality (VR)-based flight training simulator, as an alternative for real-world drone-mediated building inspection training.

Design/methodology/approach

Construction, engineering and management students were asked to pilot drones in the VR-based DroneSim space and perform common flight operations and inspection tasks within the spatiotemporal context of a building construction project. Another student group was also recruited and asked to perform a similar building inspection task in real world. The National Aeronautics and Space Administration (NASA)–Task Load Index (TLX) survey was used to assess students’ inflight workload demand under both Real and DroneSim conditions. Post-assessment questionnaires were also used to analyze students’ feedback regarding the usability and presence of DroneSim for drone building inspection training.

Findings

None of the NASA–TLX task load levels under Real and DroneSim conditions were highly rated by students, and both groups experienced comparable drone-building inspection training. Students perceived DroneSim positively and found the VR experience stimulating.

Originality/value

This study’s contribution is twofold: to better understand the development stages involved in the design of a VR-based drone flight training simulator, specifically for building inspection tasks; and to improve construction students’ drone operational and flight training skills by offering them the opportunity to enhance their drone navigation skills in a risk-free, repeatable yet realistic environment. Such contributions ultimately pave the way for better integration of drone-mediated building inspection training in construction education while meeting industry needs.

Open Access
Article
Publication date: 2 April 2021

Patrick Holzmann, Christian Wankmüller, Dietfried Globocnik and Erich J. Schwarz

Mountaineering and related activities are increasingly becoming popular and are accompanied by an increase in medical incidents. Emergency operations in mountainous terrain are…

3158

Abstract

Purpose

Mountaineering and related activities are increasingly becoming popular and are accompanied by an increase in medical incidents. Emergency operations in mountainous terrain are time-critical and often pose major logistical challenges for rescuers. Drones are expected to improve the operational performance of mountain rescuers. However, they are not yet widely used in mountain rescue missions. This paper examines the determinants that drive the behavioral intention of mountain rescuers to adopt drones in rescue missions.

Design/methodology/approach

This is a behavioral study that builds upon an extended model of the unified theory of acceptance and use of technology (UTAUT) and investigates the relationship between individual attitudes, perceptions, and intentions for drone adoption. Original survey data of 146 mountain rescuers were analyzed using moderated ordinary least squares (OLS) regression analysis.

Findings

Results indicate that the behavioral intention to use drones in mountain rescue missions is driven by the expected performance gains and facilitating conditions. Favorable supporting conditions and experience with drones further moderate the relationship between performance expectancy and behavioral intention. The effects for effort expectancy, social influence, and demonstrations were not significant.

Practical implications

Rescue organizations and stakeholders are recommended to consider the identified determinants in the implementation of drones in emergency logistics. Drone manufacturers targeting mountain rescue organizations are advised to focus on operational performance, provide sufficient support and training, and promote the gathering of practical experience.

Originality/value

A tailored-model that provides first empirical results on the relevance of personal and environmental factors for the acceptance of drones in emergency logistics is presented.

Details

International Journal of Physical Distribution & Logistics Management, vol. 51 no. 4
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 30 November 2021

Mohd Javaid, Ibrahim Haleem Khan, Ravi Pratap Singh, Shanay Rab and Rajiv Suman

Unmanned aerial vehicles are commonly known as UAVs and drones. Nowadays, industries have begun to realise the operational and economic benefits of drone-enabled tasks. The…

1151

Abstract

Purpose

Unmanned aerial vehicles are commonly known as UAVs and drones. Nowadays, industries have begun to realise the operational and economic benefits of drone-enabled tasks. The Internet of Things (IoT), Big Data, drones, etc., represent implementable advanced technologies intended to accomplish Industry 4.0. The purpose of this study is to discuss the significant contributions of drones for Industry 4.0.

Design/methodology/approach

Nowadays, drones are used for inspections, mapping and surveying in difficult or hazardous locations. For writing this paper, relevant research papers on drone for Industry 4.0 are identified from various research platforms such as Scopus, Google Scholar, ResearchGate and ScienceDirect. Given the enormous extent of the topic, this work analyses many papers, reports and news stories in an attempt to comprehend and clarify Industry 4.0.

Findings

Drones are being implemented in manufacturing, entertainment industries (cinematography, etc.) and machinery across the world. Thermal-imaging devices attached to drones can detect variable heat levels emanating from a facility, trigger the sprinkler system and inform emergency authorities. Due partly to their utility and adaptability in industrial areas such as energy, transportation, engineering and more, autonomous drones significantly impact Industry 4.0. This paper discusses drones and their types. Several technological advances and primary extents of drones for Industry 4.0 are diagrammatically elaborated. Further, the authors identified and discussed 19 major applications of drones for Industry 4.0.

Originality/value

This paper’s originality lies in its discussion and exploration of the capabilities of drones for Industry 4.0, especially in manufacturing organisations. In addition to improving efficiency and site productivity, drones can easily undertake routine inspections and check streamlines operations and maintenance procedures. This work contributes to creating a common foundation for comprehending Industry 4.0 outcomes from many disciplinary viewpoints, allowing for more research and development for industrial innovation and technological progress.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 463