Search results

1 – 10 of over 1000
Article
Publication date: 18 October 2018

Kun Wang and Juntong Xi

This paper aims to present an optimization method of the input driving signal of a piezoelectric inkjet printhead to improve droplet consistency and increase jetting frequency.

Abstract

Purpose

This paper aims to present an optimization method of the input driving signal of a piezoelectric inkjet printhead to improve droplet consistency and increase jetting frequency.

Design/methodology/approach

The optimization target is the transient pressure in the nozzle caused by the input driving signal, which directly generates the droplets. After demonstrating the linearity of the driving input and system pressure, an analytic model as a transfer function was developed, allowing calculation of the pressure vibration in the nozzle for an arbitrary input. Different patterns of input signal were parameterized and applied into the optimizing function, which represents the difference between the ideal and the actual pressure vibration. By determining the function minimum, the optimized parameters of the input signal were estimated.

Findings

Optimization results of different input patterns were compared and verified by the numerical model of the printhead, and it was revealed that the optimization method that combined the quenching pulse and an increased falling time interval was more effective than use of a single method.

Originality/value

After the process of optimization, a new type of input signal to the piezoelectric inkjet printhead was showed. By this method, the frequency of the printhead could be increased without losing consistency of droplets.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 May 2023

Aniela Kusber, Rafał Józef Gaida, Katarzyna Dziubek and Marian Wit

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the…

Abstract

Purpose

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the characteristics of ink application in food packaging. The impact of the resin on the jettability of the existing printability phase diagrams was also assessed.

Design/methodology/approach

Inks with different resin loadings were tested for selected properties, such as viscosity, particle size and surface tension. Stability was determined using a Turbiscan AGS turbidimeter and LumiFuge photocentrifuge analyzer. The ink layer fastness against abrasion and foodstuffs was evaluated using an Ugra device and according to PN-EN 646, respectively. JetXpert was used to assess Ricoh printhead jetting performance.

Findings

Printability diagrams successfully characterized the jettability of polyurethane inkjet inks on a multi-nozzle printhead and the binder improved droplet formation and printing precision.

Originality/value

Magenta water-based inkjet inks with commercial resins have been developed for printing on paper substrates. To the best of the authors’ knowledge, for the first time, inkjet ink stability was evaluated using the Turbiscan AGS and LumiFuge analyzers, and jettability models were verified using an industrial multi-nozzle printhead.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 June 2021

Yih-Lin Cheng and Tzu-Wei Tseng

Material-jetting (MJ) three-dimensional (3D) printing processes are competitive due to their printing resolution and printing speed. Driving waveform design of piezoelectric…

Abstract

Purpose

Material-jetting (MJ) three-dimensional (3D) printing processes are competitive due to their printing resolution and printing speed. Driving waveform design of piezoelectric printhead in MJ would affect droplet formation and performance, but there are very limited studies on it besides patents and know-hows by commercial manufacturers. Therefore, in this research, the waveform design process to efficiently attain suitable parameters for a multi-nozzle piezoelectric printhead was studied. Therefore, this research aims to study the waveform design process to efficiently attain suitable parameters for a multi-nozzle piezoelectric printhead.

Design/methodology/approach

Ricoh’s Gen4L printhead was adopted. A high-speed camera captured pictures of jetted droplets and droplet velocity was calculated. The waveforms included single-, double- and triple-pulse trapezoidal patterns. The effects of parameters were investigated and the suitable ones were determined based on the avoidance of satellite drops and preference of higher droplet velocity.

Findings

In a single-pulse waveform, an increase of fill time (Tf) decreased the droplet velocity. The maximum velocity happened at the same pulse width, the sum of fill time and hold time (Tf + Th). In double- and triple-pulse, a voltage difference (Vd) above zero in the holding stage was adopted except the last pulse to avoid satellite drops. Suitable parameters for the selected resin were obtained and the time-saving design process was established.

Research limitations/implications

Based on the effects of parameters and observed data trends, suggested procedures to determine suitable parameters were proposed with fewer experiments.

Practical implications

This study has verified the feasibility of suggested design procedures on another resin. The required number of trials was reduced significantly.

Originality/value

This research investigated the process of driving waveform design for the multi-nozzle piezoelectric printhead. The suggested procedures of finding suitable waveform parameters can reduce experimental trials and will be applicable to other MJ 3D printers when new materials are introduced.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 July 2021

Xingquan Wang, Xiuyuan Lu, Wei Chen, Fengpeng Wang, Jun Huang, Lingli Liu, Mengchao Li and Kui Lin

This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by…

Abstract

Purpose

This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by designing a novel half-bridge inverter circuit with discrete components.

Design/methodology/approach

With one SG3524 chip, the structure based on discrete components is used to design the IGBT drive circuit. The driving waveform is isolated and sent out by photo-coupler 6N137. The protection circuit is realized by Hall sensor directly detecting the main circuit current, supplemented by a few components, including diodes, resistors, capacitors and triodes. It improves the reliability of the protection circuit.

Findings

In the driving circuit, the phase difference of signals from two channels are 180°. Moreover, when the duty cycle is set at 40%, it can ensure sufficient pulse width modulation response time. In the protection circuit, when over-current occurs, an intermittent output signal is automatically sent out. Furthermore, the over-current response time can be controlled independently. The peak voltage can be adjusted continuously from 0 to 30 kV with its frequency from 8 to 25 kHz and the power output up to 150 W.

Originality/value

The novel circuit of driving and protection makes not only its structure simpler and easier to be realized but also key parameters, such as frequency, the duty cycle and the driving voltage, continuously adjustable. Moreover, the power supply is suitable for other discharges such as corona discharge and jet discharge.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 November 2016

Hongbo Qiu, Wenfei Yu, Bingxia Tang, Weili Li, Cunxiang Yang and Yanfeng Wang

Taking a 2,000 r/min 10 kW permanent magnet motor as an example, the purpose of this paper is to study the influence of driving modes on the performance of permanent magnet motor…

Abstract

Purpose

Taking a 2,000 r/min 10 kW permanent magnet motor as an example, the purpose of this paper is to study the influence of driving modes on the performance of permanent magnet motor at limit conditions, and researched the variation mechanism of motor performance influenced by different driving modes.

Design/methodology/approach

A two-dimensional electromagnetic field model of the permanent magnet motor was established, and a rectangular-wave driving circuit was built. By using the finite element method, the electromagnetic field, current, harmonic content and eddy current loss were calculated when the motor operated at rated load and limit load. On the basis of the motor loss calculation, the temperature field of the motor operating at rated condition and limit condition was researched, and the factors that influence motor limit overload capacity were analyzed. By analyzing the motor loss variation at different load conditions, the change mechanism of the motor temperature field was determined further. Combined with the related experiments, the correctness of the above analysis was verified.

Findings

Permanent magnet synchronous motor (PMSM) driven by sine wave is better compared with brushless direct current motor (BLDCM) driven by rectangular wave in reducing the magnetic field harmonics, motor losses and optimizing the temperature distribution in the motor. The method driven by sine wave could improve the motor output performance including the motor efficiency and the motor overload capacity. The winding temperature is the most important factor that limits the output capability of PMSM operating for a long time. However, because of the large rotor eddy current losses, the permanent magnet temperature is the most important factor that limits the output capability of BLDCM operating for a long time.

Practical implications

The influence of driving modes on the motor magnetic field, losses and temperature distribution, efficiency and overload capacity was determined, and the influence mechanism was also analyzed. Combined with the analysis of the electromagnetic and temperature fields, the advantages of different driving modes were presented. This study could provide an important basis for the design of permanent magnet motors with different driving modes, and it also provides reference for the application of permanent magnet motor.

Originality/value

This paper presents the influence of driving modes on permanent magnet motors. The limit output capacity of the motor with different driving modes was studied, and the key factors limiting the motor output capability were obtained.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 February 2024

Xiongmin Tang, Zexin Zhou, Yongquan Chen, ZhiHong Lin, Miao Zhang and Xuecong Li

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is…

Abstract

Purpose

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application.

Design/methodology/approach

To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors.

Findings

The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps.

Originality/value

A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 September 2019

Zhenmin Wang, Wenyan Fan, Fangxiang Xie and Chunxian Ye

This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of…

Abstract

Purpose

This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of large volume and weight, low performance and low efficiency of traditional plasma power supply.

Design/methodology/approach

At present, conventional silicon (Si) power devices’ switching performance is close to the theoretical limit determined by its material properties; the next-generation silicon carbide (SiC) power devices with outstanding advantages can be used to optimal design. This 8 kW LLC resonant converter prototype with silicon carbide (SiC) power devices with a modulated switching frequency ranges from 100  to 400 kHz.

Findings

The experimental results show that the topology, switching loss, rectifier loss, transformer loss and drive circuit of the full-bridge LLC silicon carbide (SiC) plasma power supply can be optimized.

Research limitations/implications

Due to the selected research object (plasma power supply), this study may have limited universality. The authors encourage the study of high frequency resonant converters for other applications such as argon arc welding.

Practical implications

This study provides a practical application for users to improve the quality of plasma welding.

Originality/value

The experimental results show that the full-bridge LLC silicon carbide (SiC) plasma power supply is preferred in operation under conditions of high frequency and high voltage. And its efficiency can reach 98%, making it lighter, more compact and more efficient than previous designs.

Details

Circuit World, vol. 45 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 June 2014

Hong Liu, Dapeng Yang, Li Jiang and Shaowei Fan

– The purpose of this paper is to present a five-fingered, multisensory prosthetic hand integrating both intuitive myoelectric control and sensory feedback.

2208

Abstract

Purpose

The purpose of this paper is to present a five-fingered, multisensory prosthetic hand integrating both intuitive myoelectric control and sensory feedback.

Design/methodology/approach

The artificial hand’s palm has a three-arcuate configuration and the thumb can move along a cone surface, improving the resemblance with the biological hand. By using a coupling linkage mechanism, each finger is independently actuated by a direct current motor. Both torque and position sensors are embedded in the finger to sense the hand’s status and its interaction with the outer environment. The proposed human-in-the-loop control system consists of an internal motion control scheme and an external human–machine interface. The pattern recognition-based electromyography (EMG) control scheme is adopted to control the motion of the hand, and the transcutaneous electrical nerve stimulation (TENS) is utilized to feedback the hand’s sensory information to its user.

Findings

The hand prototype shows that it has an anthropomorphic appearance (85 per cent to an average human hand), low weight (420 g), great power (10 N on the fingertip) and eligible dexterity. Clinical evaluation of the prosthetic hand on transradial amputees also approves the hand design.

Originality/value

From a systematic view, the paper details the design concepts of the HIT–DLR prosthetic hand IV, especially on its appearance, mechanism, myoelectric control and sensory feedback.

Details

Industrial Robot: An International Journal, vol. 41 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 November 2017

Lei Qi, Zhiyuan Shen, Jianjian Gao, Guoliang Zhao, Xiang Cui and Wei Kang

This paper aims to establish the wideband model of a sub-module in a modular multilevel converter (MMC) and analyze the switch transients of the sub-module.

Abstract

Purpose

This paper aims to establish the wideband model of a sub-module in a modular multilevel converter (MMC) and analyze the switch transients of the sub-module.

Design/methodology/approach

The paper builds an MMC sub-module test circuit and conducts dynamic tests both with and without the bypass thyristor. Then, it builds the wideband model of the MMC sub-module and extracts the model parameters. Finally, based on the wideband model, it simulates the switch transients and analyzes the oscillation mechanism.

Findings

The dynamic testing shows the bypass thyristor will add oscillations during switch transients, especially during the turn-on process. The thyristor acts like a small capacitor and reduces the total capacitor in the turn-on circuit loop, thus causing under-damped oscillations.

Originality/value

This paper found that the bypass thyristor will influence the MMC sub-module switch transients under certain circumstances. This paper proposes a partial inductance extraction procedure for the MMC sub-module and builds a wideband model of the sub-module. The wideband model is used to analyze and explain the switch transients, and can be further used for insulated gate bipolar transistor switch oscillation inhibition and sub-module design optimization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000