Search results

21 – 30 of over 7000
Article
Publication date: 1 April 1987

M. Bayes, K. Chiba and Y. Kurokawa

The key to the production of high quality multilayer PWBs lies in a clear understanding of the many interactions between the chemical and mechanical processing involved. This…

Abstract

The key to the production of high quality multilayer PWBs lies in a clear understanding of the many interactions between the chemical and mechanical processing involved. This describes some of these interactions, namely those between oxide treatment, lamination and drilling and the subsequent chemical processing steps, up to, and including, copper electroplating. Choice of oxide treatment has consequences that are not limited to the lamination and drilling operations. Process problems, such as ‘pink ring (haloing)’ are discussed in the context of their sensitivity to particular stages in the manufacturing process.

Details

Circuit World, vol. 14 no. 1
Type: Research Article
ISSN: 0305-6120

Abstract

Details

Prioritization of Failure Modes in Manufacturing Processes
Type: Book
ISBN: 978-1-83982-142-4

Article
Publication date: 1 July 2005

Xiuzhi Qu and Brent Stucker

This paper presents a unique method to recognize circular holes from 3D models in the STL format. The topological information generated by this method enables identification of…

Abstract

Purpose

This paper presents a unique method to recognize circular holes from 3D models in the STL format. The topological information generated by this method enables identification of holes and tool path generation for holes which should be drilled rather than milled.

Design/methodology/approach

A method based on a set of developed algorithms is used to identify closed loops from a STL model, identify which closed loops correspond to cylindrical holes, find hole orientations, locations and diameters, and calculate the depth for the recognized holes. The developed procedure and algorithms have been implemented in Visual C++ to illustrate the efficacy of the method.

Findings

The implementation results showed that the developed algorithms can successfully recognize circular holes of differing sizes on both simple and complex surfaces, and in any orientation. Tool paths can thus be generated from STL models to more efficiently and accurately machine circular holes.

Research limitations/implications

The developed method requires that at least one simple closed loop exist for each potential hole.

Originality/value

A new and unique hole recognition method for use with STL models was developed. This method is useful for accurately and efficiently machining parts with circular holes from STL models as well as finish machining near‐net shape parts with circular holes created using rapid prototyping.

Details

Rapid Prototyping Journal, vol. 11 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2021

Liangjie Mao, Mingjie Cai, Qingyou Liu and Ying Zhang

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Abstract

Purpose

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Design/methodology/approach

In this paper, a multi-phase flow model considering the endothermic decomposition of hydrate is established and finite difference method is used to solve the mathematical model. The model is validated by reproducing the field test data of a well in Shenhu Sea area. Besides, optimization of design parameters is presented to ensure engineering safety during the solid fluidization exploitation of NGH in South China Sea.

Findings

To ensure the engineering safety during solid fluidization exploitation of marine NGH, taking the test well as an example, a drilling flow rate range of 40–50 L/s, drilling fluid density range of 1.2–1.23 g/cm3 and rate of penetration (ROP) range of 10–20 m/h should be recommended. Besides, pre-cooled drilling fluid is also helpful for inhibiting hydrate decomposition.

Originality/value

Systematic research on the effect of multiphase flow behaviors on the engineering safety is scare, especially for the solid fluidization exploitation of NGH in South China Sea. With the growing demand for energy, it is of great significance to ensure the engineering safety before the large-scale extraction of commercial gas from hydrate deposits. The result of this study can provide profound theoretical bases and valuable technical guidance for the commercial solid fluidization exploitation of NGH in South China Sea.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2006

J. Rochlis, F. Delgado and J. Graham

The goal of this research has been to design and field test a multi‐use planetary rover vehicle. SCOUT has been developed to test advanced rover hardware and software technologies…

Abstract

Purpose

The goal of this research has been to design and field test a multi‐use planetary rover vehicle. SCOUT has been developed to test advanced rover hardware and software technologies and to enable the development and demonstration of mission operations concepts applicable to future planetary rover vehicle development activities.

Design/methodology/approach

This paper presents a description of the SCOUT vehicle capabilities and the results of the remote field testing conducted recently in Meteor Crater, AZ. These tests included (among others) onboard driving by suited crewmembers, remote teleoperation, autonomous point‐to‐point navigation, obstacle avoidance, human tracking and following, gesture recognition and onboard suit‐recharge.

Findings

SCOUT was successfully tested in all three driving modes (onboard by two suited crewmembers, teleoperation and autonomous) and additional capabilities verified over the course of the testing period.

Research limitations/impilications

Various tests experienced periodic telemetry drop‐outs to the vehicle. Future research should improve upon the communications architecture to minimize the loading on system bandwidth.

Practical implications

A multi‐use planetary rover will prove very useful on future Lunar and Martian exploration missions on an assortment of activities. In addition to equipment transport, riding on the rover will allow crewmembers to cover more surface area while conserving important extravehicular activity suit consumables.

Originality/value

Several new concepts for rover technologies are presented here including on‐board suit recharge, stereo‐vision human tracking and following, gesture recognition and autonomous driving and navigation.

Details

Industrial Robot: An International Journal, vol. 33 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 June 2013

Cezary Zieliński, Włodzimierz Kasprzak, Tomasz Kornuta, Wojciech Szynkiewicz, Piotr Trojanek, Michał Walęcki, Tomasz Winiarski and Teresa Zielińska

Machining fixtures must fit exactly the work piece to support it appropriately. Even slight change in the design of the work piece renders the costly fixture useless. Substitution…

Abstract

Purpose

Machining fixtures must fit exactly the work piece to support it appropriately. Even slight change in the design of the work piece renders the costly fixture useless. Substitution of traditional fixtures by a programmable multi‐robot system supporting the work pieces requires a specific control system and a specific programming method enabling its quick reconfiguration. The purpose of this paper is to develop a novel approach to task planning (programming) of the reconfigurable fixture system.

Design/methodology/approach

The multi‐robot control system has been designed following a formal approach based on the definition of the system structure in terms of agents and transition function definition of their behaviour. Thus, a modular system resulted, enabling software parameterisation. This facilitated the introduction of changes brought about by testing different variants of the mechanical structure of the system. A novel approach to task planning (programming) of the reconfigurable fixture system has been developed. Its solution is based on constraint satisfaction problem approach. The planner takes into account physical, geometrical, and time‐related constraints.

Findings

Reconfigurable fixture programming is performed by supplying CAD definition of the work piece. Out of this data the positions of the robots and the locations of the supporting heads are automatically generated. This proved to be an effective programming method. The control system on the basis of the thus obtained plan effectively controls the behaviours of the supporting robots in both drilling and milling operations.

Originality/value

The shop‐floor experiments with the system showed that the work piece is held stiffly enough for both milling and drilling operations performed by the CNC machine. If the number of diverse work piece shapes is large, the reconfigurable fixture is a cost‐effective alternative to the necessary multitude of traditional fixtures. Moreover, the proposed design approach enables the control system to handle a variable number of controlled robots and accommodates possible changes to the hardware of the work piece supporting robots.

Details

Industrial Robot: An International Journal, vol. 40 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 March 2020

Min Ji, Shuhai Liu and Huaping Xiao

The purpose of this paper is to study the tribology behavior of steel–steel contact under the lubrication of water-based drilling mud with different oleic acid-filled…

Abstract

Purpose

The purpose of this paper is to study the tribology behavior of steel–steel contact under the lubrication of water-based drilling mud with different oleic acid-filled microcapsules as lubricant additives.

Design/methodology/approach

A ball-on-disc tribometer was used to evaluate the lubrication properties of the steel–steel contact. The wear tracks of the worn surfaces were observed by a scanning electron microscope.

Findings

Results show that the dependence of both friction and wear on the category of additives shares a consistent pattern. In contrast to oleic acid and empty microcapsules, oleic acid-filled microcapsules achieve the best tribological performance which is related to the lubricant effect of oleic acid and the isolation and rolling abilities of microcapsules.

Practical implications

This study provides a helpful method of encapsulated lubricant additives to prolong lubrication performance for steel–steel contact.

Originality/value

This study has applied microcapsules to improve the tribological properties of drilling mud.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0320/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1996

M. Weinhold and D.J. Powell

Emerging ‘chip‐size’packages, and bare flip‐chips, require new substrate properties if high lead count chips are tobe reliably interconnected on printed wiring boards and…

321

Abstract

Emerging ‘chip‐size’ packages, and bare flip‐chips, require new substrate properties if high lead count chips are to be reliably interconnected on printed wiring boards and multichip modules at low cost. Blind via holes have been shown to increase interconnect density significantly without adding layers which contribute to high cost. Until recently, the use of blind vias has been limited to high‐end applications since standard fabrication methods, either sequential lamination or controlled depth drilling, are too slow and expensive for most high volume commercial applications. To maintain a low layer count while interconnecting higher I/O packages, commercial and consumer electronics require a substrate technology which supports high speed, micro‐via hole formation. This paper describes a process for fabricating high speed micro‐vias in dimensionally stable non‐woven Aramid reinforced laminates using laser ablation technology. Laser equipment capable of producing over 100 blind micro‐via holes per second is discussed. The process steps of hole cleaning and plating are reviewed, showing how existing PWB manufacturing technologies can be used. This process is compared with other methods of generating small holes and blind vias in printed wiring boards. In addition, requirements for flip‐chip and chip‐size packages, including a coefficient of thermal expansion of <10 ppm/°C and thin laminate dimensional stability of <0.03%, are explained.

Details

Circuit World, vol. 22 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 February 2023

Hüseyin Gökçe and Mehmet Ali Biberci

This study aims to obtain the lowest surface roughness (Ra) and drill bit adhesion values (AV) depending on the change in control factors (cutting speed-Vc, feed rate-f and drill

Abstract

Purpose

This study aims to obtain the lowest surface roughness (Ra) and drill bit adhesion values (AV) depending on the change in control factors (cutting speed-Vc, feed rate-f and drill bit-D) during drilling of the Al 5083 H116 alloy. Low roughness values increase the fatigue strength of the final part and affect tribological properties such as lubrication and friction. In the machining of ductile materials, the AV increases the Ra value and negatively affects the tool life.

Design/methodology/approach

Drilling tests were conducted using Taguchi L16 orthogonal array. The experimental measurement findings for Ra and AV were adjusted utilizing the Grey Relational Analysis (GRA), the Response Surface Method (RSM) and Artificial Neural Networks (ANN) to generate prediction values. SEM detected drill-tip adhesions and chip morphology and they were analyzed by EDX.

Findings

Ra and AV increased as the f increased. Vc affects AV; 86.04% f on Ra and 54.71% Vc on AV were the most effective control parameters. After optimizing Ra and AV using GRA, the f is the most effective control factor. Vc: 120 m/min, f: 0.025 mm/rev and D2 were optimal. ANN predicted with Ra 99.6% and AV 99.8% accurately. Mathematical models are obtained with RSM. The increase in f increased AV, which had a negative effect on Ra, whereas the increase in Vc decreased the adhesion tendency. With the D1 drill bit with the highest flute length, a relatively lower Ra was measured, as it facilitates chip evacuation. In addition, the high correlations of the mathematical models obtained indicate that the models can be used safely.

Originality/value

The novelty of this study is to determine the optimum drilling parameters with GRA and ANN for drilling the necessary holes for the assembly of ammunition wing propulsion systems, especially those produced with Al 5083 H116 alloy, with rivets and bolts.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 1953

ONE of the highlights of British production in recent years has been the enormous advances made in aircraft design and production and the consequent lead given us in the market…

Abstract

ONE of the highlights of British production in recent years has been the enormous advances made in aircraft design and production and the consequent lead given us in the market for commercial airliners. This has been achieved despite the fact that up to 75 per cent of the total cost of an airliner may be spent on labour.

Details

Work Study, vol. 2 no. 4
Type: Research Article
ISSN: 0043-8022

21 – 30 of over 7000