Search results

1 – 10 of 386
Article
Publication date: 26 March 2019

Mahmoud M. Elkholy and Fathi Abd-Elkader

This paper aims to present an optimal variable speed drive of a doubly fed induction motor (DFIM) with minimum losses and reduced inverter capacity. The operation with minimum…

Abstract

Purpose

This paper aims to present an optimal variable speed drive of a doubly fed induction motor (DFIM) with minimum losses and reduced inverter capacity. The operation with minimum losses ensures that the DFIM develops the required load torque at desired speed with maximum energy saving. Moreover, the control of rotor voltage ensures the reduced inverter capacity. The water cycle algorithm (WCA) as one of meta-heuristic optimization techniques is used to estimate the optimal rotor voltages to drive the DFIM with minimum losses. The results of WCA are confirmed with other well-known and reliable optimization method such as particle swarm optimization along with classical method.

Design/methodology/approach

The DFIM is an efficient alternative solution of synchronous motor (SM) because of its speed is synchronized with both stator and rotor frequencies regardless the load torque. As a result, the speed of variable speed drive associated with DFIM can be controlled through a rotor inverter with reduced capacity rather than SM. The output voltage of rotor inverter is controlled to develop the demanded output power with minimum motor losses.

Findings

A complete DFIM drive model is developed under MATLAB/SIMULINK environment using d-q dynamic model to verify the strength and significance of the proposed controller. An experimental setup using a 300 W three-phase wound rotor induction motor is established to validate the mathematical models and theoretical results. The motor performances with proposed rotor voltage control (minimum losses) are compared with conventional method of constant voltage to frequency ratio (V/f constant). It is found that the proposed WCA based on controller achieves significant reductions in motor losses, input power and rotor inverter power.

Originality/value

The paper presents an efficient method to maximize the energy saving of DFIM with a reduced inverter capacity using WCA.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 February 2023

Kanungo Barada Mohanty and Pavankumar Daramukkala

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level…

Abstract

Purpose

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level neutral point clamped converter placed at the front end, while a passive power filter is connected in shunt with it. The improvement in power quality can be achieved by reducing the total harmonic distortion in source current. The controllers were designed for the linearization of the high-power induction motor drive. A control method is presented for the regulation of the common DC-link voltage.

Design/methodology/approach

The induction motor is modeled using its dynamic equations, and a decoupling controller is designed to linearize the nonlinear dynamics of the drive through feedback. The common DC-link voltage of the proposed front-end connected converter is monitored and controlled through a control method which feeds the pulse width modulated inverter that drives the induction motor. A passive power filter is designed to meet the reactive power requirement of the system in addition to improve the power quality.

Findings

Simulations were carried out for the proposed topology of the drive mechanism, and the outcomes were analyzed by a comparative analysis of the drive system both in the presence of the passive filter as well as in the absence of the filter. The total harmonic distortion is found to be reduced enough to meet the standards with the designed filter, and the reactive power is also compensated considerably. The input power factor at the supply side is maintained almost to unity, and the DC-link voltage of the proposed circuit topology is maintained at the desired level. The overall performance of the drive system was found to be useful and economical.

Originality/value

A new topology of a front-end connected three-level neutral point clamped converter to a high power-rated induction motor drive is proposed. The drive is fed by a pulse width modulated inverter with a common DC-link with the front end connected converter. A passive filter is designed with respect to the reactive power requirement of the system and connected in shunt to the converter at the supply side. Control schemes are designed and used for the drive system and also for the regulation of the common DC-link voltage of the proposed front end connected converter.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 December 2022

Salma Jnayah and Adel Khedher

The direct torque control (DTC) of induction motor (IM) drive is featured by high ripples in the electromagnetic torque and stator flux profiles because they are controlled by two…

Abstract

Purpose

The direct torque control (DTC) of induction motor (IM) drive is featured by high ripples in the electromagnetic torque and stator flux profiles because they are controlled by two hysteresis regulators. Furthermore, the machine flux is not directly measurable. Hence, it is better to reconstitute it from the instantaneous electrical equations of the machine. Once the stator flux is estimated, we can guarantee a reliable sensorless DTC control. Thus, the purpose of this research work is to ensure fast response and full reference tracking of the IM under sensorless DTC strategy with desired dynamic behavior and low ripple levels.

Design/methodology/approach

In this work, an improved DTC strategy, which is DTC_SVM_3L, is suggested. The first step of the designed approach is to substitute the conventional inverter feeding the motor with a three-level inverter because it guarantees reduced switching losses, improved quality of voltage waveform and low-current total harmonic distortion rate. The second aim of this paper is to make the IM operate at a constant switching frequency by using the nearest three vectors-based space vector modulation (SVM) technique rather than hysteresis controllers. The third objective of this study is to conceive a sliding-mode stator flux observer, which can improve the control performances by using a sensorless algorithm to get an accurate estimation, and consequently, increase the reliability of the system and decrease the cost of using sensors. The stability of the proposed observer is demonstrated based on the Lyapunov theory. To overcome the load change disturbance in the proposed DTC control strategy, this paper exhibits a comparative assessment of four speed regulation methods: classical proportional and integral (PI) regulator, fuzzy logic PI controller, particle swarm optimization PI controller and backstepping regulator. The entire control algorithm was tested under different disturbances such as stator resistance and load torque variations.

Findings

It was ascertained that the IM, controlled with three-level inverter, exhibits good performances under the proposed DTC-SVM strategy based on a sliding-mode observer. The robustness of the suggested approach against parameter variations is also proved.

Originality/value

The theoretical development of the proposed control strategy is thoroughly described. Then, simulations using Matlab/Simulink software are launched to investigate the merits of the sensorless DTC-SVM command of three-level inverter-fed IM drive with different speed regulators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2010

Meriem Abdellatif, Maria Pietrzak‐David and Ilhem Slama‐Belkhodja

The purpose of this paper is to present a doubly fed induction machine (DFIM) operating in motor mode and supplied by two voltage source inverters (in stator and rotor sides).

Abstract

Purpose

The purpose of this paper is to present a doubly fed induction machine (DFIM) operating in motor mode and supplied by two voltage source inverters (in stator and rotor sides).

Design/methodology/approach

The aim is to analyze the current sensor fault effects on the stator flux‐oriented control according to the current input‐output decoupling. This justifies the necessity of a reconfiguration control in order to satisfy the system service continuity. Also, a theoretical development of sensitivity coefficients gives an idea about control robustness toward a current sensor fault.

Findings

This paper emphasizes the system performance close dependency to the current sensor outputs accuracy. Moreover, simulation results point out the operation system deterioration in case of current sensor fault, which leads in most cases to its shut down in contrast with the industrial expectations. In this paper, the suggested solution is the DFIM speed drive control reconfiguration when a current sensor fault occurs in order to ensure system service continuity. MATLAB‐Simulink simulation results illustrate the system behavior before and after a current sensor fault. System performance preservation is performed after control reconfiguration.

Originality/value

This solution presented in this paper is relevant, especially because of its simplicity.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2003

Ahmed Masmoudi

The doubly fed machine (DFM) is presently given an increasing attention in high power variable speed drives and in wind power generation systems, where it exhibits high…

Abstract

The doubly fed machine (DFM) is presently given an increasing attention in high power variable speed drives and in wind power generation systems, where it exhibits high performances. This has been gained thanks to the stator flux oriented control. Nevertheless, beyond the effect of heating, the robustness of such control strategy is affected by saturation especially the main magnetic one. Accounting for the effect of the magnetizing branch saturation in steady‐state stability analysis, considering the case of a voltage‐controlled DFM and the case of a current‐controlled one, represents the aim of the study. To this end, a numerical procedure based on a combination of the eigenvalue and the fixed point methods has been developed. It has been found that, in both cases, accounting for saturation yields a stabilization effect which is more or less significant depending on the rotor supply parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Taher Abedinzadeh and Sajjad Tohidi

The purpose of this paper is to present an improved approach for estimation of the rotor position and speed of doubly fed induction generator, which can be used in vector control…

Abstract

Purpose

The purpose of this paper is to present an improved approach for estimation of the rotor position and speed of doubly fed induction generator, which can be used in vector control and direct torque control (DTC) schemes.

Design/methodology/approach

Some novel equations are developed for calculation of the rotor position and rotor speed. Such equations do not need to the value of stator flux linkage and just, measured values of the stator voltage and currents as well as rotor current are required to be known.

Findings

The simulation results verify the satisfactory steady-state and dynamic performance of proposed approach with both the vector control and DTC schemes. The results show that the proposed estimation approach benefits from the starting on the fly, robustness against the variations of the most of the stator and rotor parameters and immunity against the noise.

Originality/value

The proposed estimation approach is novel and the outcome of the research of authors. It is simple and effective and, no approximation is made in the calculations. The simulation results demonstrate that the proposed scheme can be successfully implemented in various control strategies, e.g. DTC and vector control.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 2 January 2018

Hamid Reza Izadfar and Hamid Naseri

Modeling electric machines is one of the powerful approaches for analyzing their performance. A dynamic model and a steady-state model are introduced for each electric machine…

Abstract

Purpose

Modeling electric machines is one of the powerful approaches for analyzing their performance. A dynamic model and a steady-state model are introduced for each electric machine. Permanent magnet induction machine (PMIM) is a dual-rotor electric machine, which has various advantages such as high-power factor and low magnetizing current. Studying PMIM and its modeling might be valuable. The purpose of this paper is to introduce a simple and accurate method for dynamic and steady-state modeling of PMIM.

Design/methodology/approach

In this paper, arbitrary dqo reference frame is used to model PMIM. First, three-phase dynamic equations of stator and rotors are introduced. Then, they are transferred to an arbitrary reference frame. The voltage and magnetic flux equations aligned at dqo axes are obtained. These equations give the dynamic model. To investigate the results, PMIM simulation is performed according to obtained dynamic equations. Simulation results verify the analytic calculations.

Findings

In this paper, dynamic equations of PMIM are obtained. These equations are used to determine dynamic equivalent circuits of PMIM. Steady-state equations and one phase equivalent circuit of the PMIM using phasor relations are also extracted.

Originality/value

PMIM equations along dqo axes and their dynamic and steady-state equivalent circuits are determined. These equations and the equivalent circuits can be transformed to different reference frames and analyzed easily.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2005

O.A. Mohammed, Z. Liu, S. Liu and N.Y. Abed

The purpose of this research is to develop new techniques for component physical modeling for the dynamic simulation of integrated power systems.

Abstract

Purpose

The purpose of this research is to develop new techniques for component physical modeling for the dynamic simulation of integrated power systems.

Design/methodology/approach

A FE‐based phase variable model is proposed so as to achieve fast and accurate simulation. Such a model is established based on the nonlinear transient FE analysis, in order to take into consideration the harmonic effects due to the nonlinear magnetization property, magnetic circuit geometry as well as other design variations.

Findings

In the FE‐based phase variable model, the inductances are described as functions of the phase angle and the magnitude of winding currents, the rotor position and other operational parameters. They are obtained from the transient FE solutions, stored in tables, and retrieved during the simulation. The FE‐based phase variable model is implemented in Simulink in two ways. The first is the equation‐based block and the second is the circuit component‐based block. The FE‐based phase variable models of various electrical components in the power system were studied. This includes various types of rotating machines and transformers. Examination and application examples show the correctness and effectiveness of the proposed operational modeling procedures.

Originality/value

The developed FE‐based physical phase variable model is as accurate as the full FE model with much faster simulation speed. It will benefit the dynamic simulation of integrated power system. This combination of physical modeling and integrated dynamic simulation is original and represents an added value to the state‐of‐the‐art in this field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 386