Search results

1 – 7 of 7
Article
Publication date: 27 January 2022

Kai Zang, Wenxin Chen, Wenping Liang, Qiang Miao, Wei Yao, Jingli Li and Yaoyao Ma

45 steel is a common material for the manufacture of various components such as shafts or gears. However, its poor surface properties often limit its applications. The purpose of…

Abstract

Purpose

45 steel is a common material for the manufacture of various components such as shafts or gears. However, its poor surface properties often limit its applications. The purpose of this paper is to find a way to enhance the surface performance of 45 steel, which is expected to improve the wear resistance of 45 steel.

Design/methodology/approach

Double glow plasma surface metallurgy technique was used to prepare hafnium carbide (HfC) coatings on the surface of the 45 steel with two preparation process; one is to diffuse two elements together, while the other is to diffuse step by step. The scanning electronic microscopy and the X-ray diffraction were used to analyze the morphology and phase of the HfC coatings. And then the wear tests were carried out for this coating.

Findings

Coating diffused step by step shows better performance; it has a 15-µm alloyed layer which is uniform and dense and its hardness can reach up to 1326.5 Vickers-hardness (HV). While the coating fabricated by diffusing elements together owns a 10-µm alloyed layer and its hardness is 1204.1 HV. According to the wear test results, both coatings have a protective effect on the substrate and the coating prepared by step-by-step diffusion process has less wear volume, indicating that it possesses better friction reduction.

Originality/value

A new method which diffuses elements together was successfully used to prepare compound HfC coating, which can reduce the cost of coating preparation and improve the efficiency of coating preparation.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 May 2020

Margarita Skiba, Viktoria Vorobyova, Alexander Pivovarov and Inna Trus

This paper aims to synthesize silver nanoparticles using atmospheric discharge plasma in contact with liquid at different pressure in reactor and to assess their catalytical…

Abstract

Purpose

This paper aims to synthesize silver nanoparticles using atmospheric discharge plasma in contact with liquid at different pressure in reactor and to assess their catalytical properties for reducing 4-nanoparticles (NP).

Design/methodology/approach

The Ag colloidal NPs was rapidly synthesized as a result of non-equilibrium low-temperature plasma formation between an electrode and the surface of AgNO3 solution for 5 min at different pressure in reactor. Synthesized Ag NPs were characterized with common analytical techniques. Ultraviolet–visible (UV) spectroscopy, dynamic light scattering, scanning microcopy analysis were used to study the formation and characteristics of silver nanoparticles.

Findings

The formation of silver colloidal solutions under plasma discharge at different pressure in reactor is characterized by the presence of surface resonance peak in the spectra. Scanning electron microscope (SEM) images confirmed the formation of spherical particles having a size distribution in the range of 15-26 nm. The AgNPs solution showed excellent rapid catalytic activity for the complete degradation of toxic 4-nitrophenol (4-NPh) into non-toxic 4-aminophenol (4-APh) within 18 min.

Research limitations/implications

Further studies are necessary for confirmation of the practical application, especially of deposition Ag NPs on TiO2.

Practical implications

The method provides a simple and practical solution to improving the synthesis of colloidal solutions of Ag NPs for degradation of organic pollutants (4-NPh) in water and wasters water.

Originality/value

Atmospheric discharge plasma in contact with liquid at different pressure can be used as an effective technique for synthesis of nanomaterials with catalytic properties.

Details

Pigment & Resin Technology, vol. 49 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 November 2022

Yaoyao Ma, Qiang Miao, Wenping Liang, Haiyang Yu, Mengjuan Yin, Kai Zang, Xueqing Pang and Xianfeng Wang

The purpose of this paper is to obtain the optimal N2/Ar ratio parameters for preparing Ta (C, N) coating. Three coatings with different N2/Ar ratios were prepared on the TA15…

Abstract

Purpose

The purpose of this paper is to obtain the optimal N2/Ar ratio parameters for preparing Ta (C, N) coating. Three coatings with different N2/Ar ratios were prepared on the TA15 substrate, and their effects on the wear properties of the coatings were discussed.

Design/methodology/approach

Ta(C, N) coatings with three different N2/Ar ratios were prepared on TA15 substrates using the double cathode glow metallurgical plasma alloying technique (DGMPA) using a step-by-step diffusion method.

Findings

With the increase of N2/Ar flow ratio, the hardness and elastic modulus of the coating first increase and then decrease. Compared with the S1 sample (N2/Ar gas ratio 25: 75) and the S3 sample (N2/Ar gas ratio 75: 25), the S2 sample (N2/Ar gas ratio 50: 50) has better mechanical properties, with hardness increased by 48.45% and 6.8%, respectively, and elastic strain ratio increased by 22.8% and 28.5%, respectively. Moreover, the wear degree of the S2 sample is less than other samples. The wear rate of the S2 sample was 32.4% lower than the S3 sample at 300°C and 14.3% lower than the S3 sample at 500°C. Therefore, the S2 sample has the best mechanical properties and the best high temperature wear resistance.

Originality/value

Ta(C, N) coatings were prepared by DGMPA technology, and the wear mechanism of Ta(C, N) coatings with different N2/Ar ratios was investigated to reduce the wear rate.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2021

Mengjuan Yin, Wenping Liang, Qiang Miao, Shiwei Zuo, Haiyang Yu and Jiale Cheng

This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN…

Abstract

Purpose

This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN) interlayer on the magnetron-sputtered AlTiSiN coating was also investigated in detail.

Design/methodology/approach

The double-glow plasma alloying (DGPA) and magnetron sputtering (MS) techniques were combined as a new approach to realize a bilayer on TA15 consisting of an AlTiSiN layer with a PN interlayer. A TiN interlayer was formed via co-diffusion during the PN conducted at 1050°C for 3 h.

Findings

The PN interlayer can effectively improve the adhesion between coating and matrix; the PN/AlTiSiN coating presented excellent adhesion (80.1 N) and anti-wear property with a nano-hardness of 18.62 GPa. The resulting three-dimensional wear-track morphology exhibited a shallow depth and a narrow width.

Originality/value

The novel combination of the DGPA and MS technologies, using an infiltration layer rather than a coating one as the intermediate layer, can effectively enhance the adhesion between AlTiSiN coating and TA15 matrix. Meanwhile, the gradient layer can effectively improve both surface bearing and wear resistance.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 July 2020

Tian Tian, Ruibo Zhao, Dongbo Wei, Kai Yang and Pingze Zhang

The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited…

Abstract

Purpose

The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited on Ti-6Al-4V alloy by double-glow plasma hydrogen-free carburizing surface technology.

Design/methodology/approach

Morphologies and phase compositions of the carburized layer were observed by scanning electron microscope and X-ray diffraction. The micro-hardness tests were used to evaluate the surface and cross-sectional hardness of carburized layer. The reciprocating friction and wear experiments under various load conditions were implemented to investigate the tribological behavior of carburized layer. Moreover, scratch test with ramped loading pattern was carried out to illuminate the deformation mechanism of carburized layer.

Findings

Compared to substrate, the hardness of surface improved to ∼1,100 HV0.1, while the hardness profile of carburized layer presented gradual decrease from ∼1,100 to ∼300 HV0.1 within the distance of the total carburizing-affected region about 30 µm. The coefficient of friction, wear rate and wear morphology of carburized layer were analyzed. Scratch test indicated that the deformation process of carburized layer could be classified into three mechanisms (elastic, changing elastic–plastic and stable elastic–plastic mechanisms), and the deformation transition of the carburizing-affected region was from changing elastic–plastic to elastic mechanisms. Both the elastic and changing elastic–plastic mechanisms are conducive to the wearing course.

Originality/value

Using this technology, hydrogen embrittlement was avoided and wear resistance property of titanium alloy was greatly improved. Simultaneously, the constitutive relation during the whole loading process was deduced in terms of scratch approach, and the deformation mechanism of carburized layer was discussed from a novel viewpoint.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0489/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 September 2017

Shan Cao, Faqing He and Jinwei Gao

Important reserves of oil and gas, which are left to be discovered and produced, are mainly concentrated in challenging locations and under severe conditions such as high pressure…

Abstract

Purpose

Important reserves of oil and gas, which are left to be discovered and produced, are mainly concentrated in challenging locations and under severe conditions such as high pressure (HP)/high temperature (HT). The presence of aggressive environments including H2S, CO2 and chlorides plus HP/HT causes a series of corrosion problems, which cost the oil industry billions of dollars a year. Thus, there is an increasing challenge for tubes (i.e. oil country tubular goods, for short, OCTG) used in producing oil and gas. The purpose of this study is to summarize different kinds of corrosion problems and their mitigation, to more efficiently protect OCTG from corrosion.

Design/methodology/approach

To effectively select proper mitigation methods, the mechanism of corrosion must be understood, which can be classified into four categories: sweet corrosion, sour corrosion, galvanic corrosion and microbiologically induced corrosion. Also, the effects of environmental and material factors on the corrosion rate are presented. Subsequently, current technology of mitigating these corrosion problems has been discussed, including the development of materials, application of chemical inhibitors and application of protective layers.

Findings

It is stressed that limits exist for each individual mitigation method; therefore, a careful balance between economic life of OCTG and safety in operation is required.

Originality/value

The main purpose of this essay is to give a brief review and detailed introduction and analysis about those technologies.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 7 of 7