Search results

1 – 10 of over 1000
Article
Publication date: 1 February 1939

W.G.A. Perring

THE increase in aeroplane speed, brought about by improved aerodynamic design and higher engine powers, together with the design restriction on airscrew tip speed resulting from…

Abstract

THE increase in aeroplane speed, brought about by improved aerodynamic design and higher engine powers, together with the design restriction on airscrew tip speed resulting from efficiency considerations, has reacted on the airscrew performance during take‐off, and has made the take‐off more difficult.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural…

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 November 2021

Ali Muhammad, Faisal Khan, Muhammad Yousuf and Basharat Ullah

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost…

Abstract

Purpose

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost making design simpler and less expensive, especially in large-scale production.

Design/methodology/approach

This paper presents a new permanent magnet transverse flux generator (PMTFG) for wind energy production. The key feature of its composition is the double armature coil in a semi-closed stator core. The main structural difference of the presented design is the use of double coil in the same space of semi-closed stator core and reduced number of stator pole pairs and rotor magnets from 12/24 to 10/20. 3D simulations are performed using finite element analysis (FEA) to measure induced voltage and magnetic field distribution at no load. The FEA is performed to quantify the change in flux linkage, induced voltage and output power as a function of different speeds and load current.

Findings

Results show that PMTFG with double coil configuration has improved electromagnetic performance in terms of flux linkage, induced voltage, output power and efficiency. The power density of 10/20 PMTFG with the double coil is 0.0524 KW/Kg, about an 18% increase compared to the conventional design.

Research limitations/implications

The proposed PMTFG is highly recommended for direct drive applications such as wind power.

Originality/value

Four models are simulated by FEA with single and double coil configuration, and load analysis is performed on all simulated models. Finally, results are compared with conventional PMTFG.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 July 2018

Martin Ihle, Steffen Ziesche, Paul Gierth, Andreas Tuor, Jonathan Tigelaar and Oliver Hirsch

The purpose of this paper is to analyze a presentation of eddy current sensing coils for the turbo charger speed measurement, which were manufactured with the low temperature…

Abstract

Purpose

The purpose of this paper is to analyze a presentation of eddy current sensing coils for the turbo charger speed measurement, which were manufactured with the low temperature co-fired ceramic (LTCC) technology. The goal is to be able to manufacture small robust coils with complex geometries and improved signal output.

Design/methodology/approach

A crucial element for its performance is the quality factor of the embedded coil. Thanks to the use of the developed LTCC manufacturing processes, the lateral wounding distance of the printed coils can be reduced to 30 µm, and simultaneously, the aspect ratio should be enlarged compared to standard LTCC technologies. By the use of a novel printed double-D coil design, the overall sensor characteristics will be improved.

Findings

The metallization thickness can be simultaneously enhanced that results in the internal resistance being reduced. Thus, the inductivity and the ohmic resistance achieve an obvious optimization that results in significant improvement of the quality factor of the novel coils when compared to standard technologies. Embedded micro coils have a sintered metallization aspect ratio of more than one and thus an optimal performance differing clearly from prior art. Their reliability was proven through temperature cycle tests of over more than 1,300 h.

Research limitations/implications

The developed LTCC coil technology will be introduced in the JAQUET sensor portfolio of TE Connectivity for the measurement of turbocharger speed on both passenger cars and trucks. The measurement and control of turbochargers speed enables the optimal regulation of airflow into the engine thereby improving the fuel economy and leading to a reduction of engine emissions.

Originality/value

This paper shows fabrication and performance of the original manufactured LTCC coil for turbocharger speed sensors and its optimized signal output by the novel design.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 January 2018

Dong Yang, Zhenxiang Liu, Ting Shu, Lijia Yang, Jianming Ouyang and Shen Zhi

Helical coil electromagnetic launchers (HEMLs) using motion-induced commutation strategy solve the problem of synchronization control perfectly. HEMLs can meet the requirements of…

Abstract

Purpose

Helical coil electromagnetic launchers (HEMLs) using motion-induced commutation strategy solve the problem of synchronization control perfectly. HEMLs can meet the requirements of multiple applications such as the electromagnetic catapult, electromagnetic mortar and high-velocity coilgun. The trade-off between the velocity and efficiency is an important basis for these different applications. To optimize such objectives before actual design, the purpose of this paper is to focus on the efficient and flexible calculation model and algorithm. A novel structure of HEML is proposed after the transient simulation by this algorithm, which can improve the energy conversion efficiency and suppress the muzzle arc without affecting the velocity too much.

Design/methodology/approach

The equivalent circuit model of the launcher is established and the governing equations are derived. A combination of the four-stage Runge–Kutta method and the trapezoidal quadrature formula are used to solve the governing equations.

Findings

With smaller number of turns in the coils of HEML, the velocity is larger and the efficiency is lower. The non-uniform HEML is an effective option to improve the energy conversion efficiency and to suppress the muzzle arc with almost the same muzzle velocity as the conventional HEML.

Originality/value

The paper presents a common model and a flexible fast numerical method which can be used in multi-objective optimization of HEMLs such as the genetic algorithm. A new structure of the non-uniform HEML is proposed to improve the energy conversion efficiency and to suppress the muzzle arc of the launcher.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 June 2019

Tomasz Sobota

The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures…

Abstract

Purpose

The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures. This paper aims to present a method of simultaneous determination of coefficients in correlation formulas for the Nusselt number on both sides of the heat transfer surface.

Design/methodology/approach

The idea of the developed method is based on determining such a values of the coefficients in Nusselt number correlations that fulfill the condition of equality between the measured and calculated temperature at the outlet of heat exchanger in terms of least squares method. To test the proposed method, a special experimental installation was built. The heat transfer in helically coiled tube-in-tube heat exchanger was examined for the wide range of temperature changes and volumetric flow rates of working fluid.

Findings

The simulation results were validated with an experimental data. The results show that the heat transfer coefficient of the counter-current is higher than the co-current flow in helically coiled heat exchanger. This phenomenon can be beneficial particularly in the laminar flow regime.

Research limitations/implications

The correlation for the Nusselt number as a function of the Reynolds and Prandtl numbers for hot and cold liquid was obtained with the least squares method for the experimental data.

Practical implications

The presented method allows for the simultaneous determination of heat transfer coefficient on both sides of the wall without the necessity of indirect calculation of the overall heat transfer coefficient. The presented method can be used in the thermal design of various type heat exchangers.

Originality/value

This work presents the new methodology of determination correlations for the helically coiled tube-in-tube heat exchanger for co-current and counter-current arrangement, which can be used in thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Wojciech Stęplewski, Andrzej Dziedzic, Adam Kłossowicz, Paweł Winiarski, Janusz Borecki, Grażyna Kozioł and Tomasz Serzysko

– This paper aims to report the investigations of capacitors and inductors embedded into printed circuit boards (PCBs) designed in various layouts.

Abstract

Purpose

This paper aims to report the investigations of capacitors and inductors embedded into printed circuit boards (PCBs) designed in various layouts.

Design/methodology/approach

The research were focused on the components embedded into four-layer PCBs with different structures of the inner layers. Three special capacitive laminates for manufacturing of thin-film embedded capacitors and several types of coils in the form of a spiral, meander and solenoid are described. In addition, a part of the spiral-type coils was formed with an aperture in the center in which the magnetic core, made of soft magnetic composites’ material was placed to increase the coil inductance.

Findings

Various constructions of embedded capacitors and coils were designed and manufactured. Capacitance and loss tangent of capacitors to determine the repeatability of the production process were determined. Capacitor’s long-term stability analysis was performed by exposing test samples to elevated temperatures (70, 100 or 130°C), realized with the aid of heating plate, for at least 160 h. The temperature characteristics for the capacitance and loss tangent from 15 to 100°C were determined. Also the induction of different designs and layouts coils was determined.

Originality/value

The wide parameters’ characterization of capacitors and coils embedded into PCBs allow the analysis of their properties with regard to their practical application. The promising results of the realized measurements show that the capacitors and induction coils with studied structures can be widely used in the construction of embedded circuits into PCBs (e.g. filters, radio frequency identification systems and generators).

Article
Publication date: 1 August 1999

Pacifico Marcello Pelagagge

The paper presents results of a pilot project on technological innovation of main flexible components for automotive suspension systems, that are coil springs and stabilizer bars…

Abstract

The paper presents results of a pilot project on technological innovation of main flexible components for automotive suspension systems, that are coil springs and stabilizer bars. Current technology has been described and related problems have been outlined. In order to fulfil features such as compactness, lightness and environmentally conscious design, solutions based on new forms, materials and manufacturing processes have been proposed. Improvements in weights, dimensions, noiselessness, corrosion and fatigue strength, environmental effects, have been all assessed, keeping a quite low project cost (around $3 million).

Details

Industrial Management & Data Systems, vol. 99 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 June 1997

N. Harid, D.M. German and R.T. Waters

Self‐inductance calculations are presented for coils of modular construction. Individual modules have a fixed winding density, so that a complete multi‐module coil will be…

397

Abstract

Self‐inductance calculations are presented for coils of modular construction. Individual modules have a fixed winding density, so that a complete multi‐module coil will be characterized by larger inter‐turn spacing at its extremities to provide suitable insulation strength under impulse voltage conditions. Gives inductance computations using finite‐element analysis, so that empirical correction factors to take account of end‐effects and inter‐turn spacing are unnecessary. Comparison where possible with established empirical methods shows consistency. Gives an example of oscillatory high‐voltage tests.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 16 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 May 2022

Li Zhang, Jiangjun Ruan and Daochun Huang

This paper aims to establish the mathematical model and solve the complex calculation multi-field coupling problem for an electromagnetic overhead transmission line galloping…

Abstract

Purpose

This paper aims to establish the mathematical model and solve the complex calculation multi-field coupling problem for an electromagnetic overhead transmission line galloping excitation test system.

Design/methodology/approach

An electromagnetic excitation test system is introduced. To calculate the vibration response of the transmission line, a transient coupled finite element model containing electromagnetic repulsive mechanism and transmission line system was established. Considering the advantages of Newmark-ß algorithm and fourth-order Runge–Kutta algorithm, the two algorithms are combined to solve the model. Compared with the simulation results of existing commercial finite element software, the accuracy of the calculation model of electromagnetic force and wire vibration response are verified.

Findings

Comparison results show that the proposed calculation model can accurately obtain the force of electromagnetic mechanism and the vibration response of the overhead power lines, and improve the calculation efficiency. The calculation results show that vibration under electromagnetic excitation presents a double half-wave mode, and the galloping amplitude varies according to the charging voltage.

Originality/value

This paper built the transient simulation model for a galloping test system. The Newmark-ß algorithm and the fourth-order Runge–Kutta algorithm are used to solve the model. The research results are of great significance for the actual galloping test system design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000