Search results

1 – 6 of 6
Article
Publication date: 31 July 2020

Tian Tian, Ruibo Zhao, Dongbo Wei, Kai Yang and Pingze Zhang

The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited…

Abstract

Purpose

The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited on Ti-6Al-4V alloy by double-glow plasma hydrogen-free carburizing surface technology.

Design/methodology/approach

Morphologies and phase compositions of the carburized layer were observed by scanning electron microscope and X-ray diffraction. The micro-hardness tests were used to evaluate the surface and cross-sectional hardness of carburized layer. The reciprocating friction and wear experiments under various load conditions were implemented to investigate the tribological behavior of carburized layer. Moreover, scratch test with ramped loading pattern was carried out to illuminate the deformation mechanism of carburized layer.

Findings

Compared to substrate, the hardness of surface improved to ∼1,100 HV0.1, while the hardness profile of carburized layer presented gradual decrease from ∼1,100 to ∼300 HV0.1 within the distance of the total carburizing-affected region about 30 µm. The coefficient of friction, wear rate and wear morphology of carburized layer were analyzed. Scratch test indicated that the deformation process of carburized layer could be classified into three mechanisms (elastic, changing elastic–plastic and stable elastic–plastic mechanisms), and the deformation transition of the carburizing-affected region was from changing elastic–plastic to elastic mechanisms. Both the elastic and changing elastic–plastic mechanisms are conducive to the wearing course.

Originality/value

Using this technology, hydrogen embrittlement was avoided and wear resistance property of titanium alloy was greatly improved. Simultaneously, the constitutive relation during the whole loading process was deduced in terms of scratch approach, and the deformation mechanism of carburized layer was discussed from a novel viewpoint.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0489/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2021

Ya'nan Lou, Pengkun Quan, Haoyu Lin, Zhuo Liang, Dongbo Wei and Shichun Di

This purpose of this paper is to design a peg-in-hole controller for a cable-driven serial robot with compliant wrist (CDSR-CW) using cable tensions and joint positions. The peg…

Abstract

Purpose

This purpose of this paper is to design a peg-in-hole controller for a cable-driven serial robot with compliant wrist (CDSR-CW) using cable tensions and joint positions. The peg is connected to the robot link through a CW. It is required that the controller does not rely on any external sensors such as 6-axis wrist force/torque (F/T) sensor, and only the compliance matrix’s estimated value of the CW is known.

Design/methodology/approach

First, the peg-in-hole assembly system based on a CDSR-CW is analyzed. Second, a characterization algorithm using micro cable tensions and joint positions to express the elastic F/T at the CW is established. Next, under the premise of only knowing the compliance matrix’s estimate, a peg-in-hole controller based on force/position hybrid control is proposed.

Findings

The experiment results show that the plug contact F/T can be tracked well. This verifies the validity and correctness of the characterization algorithm and peg-in-hole controller for CDSR-CWs in this paper.

Originality/value

First, to the authors’ knowledge, there is no relevant work about the peg-in-hole assembly task using a CDSR-CW. Besides, the proposed characterization algorithm for the elastic F/T makes the peg-in-hole controller get rid of the dependence on the F/T sensor, which expands the application scenarios of the peg-in-hole controller. Finally, the controller does not require an accurate compliance matrix, which also increases its applicability.

Article
Publication date: 3 May 2016

Yifei Tong, Ruiwen Zhao, Wei Ye and Dongbo Li

Crane plays a very important role in national economy with greatly reduced labor intensity, improved production efficiency and promoted social development as an indispensable…

Abstract

Purpose

Crane plays a very important role in national economy with greatly reduced labor intensity, improved production efficiency and promoted social development as an indispensable auxiliary tool and process equipment. Therefore, its energy consumption becomes an unavoidable topic and in fact, energy consumption of crane is very huge. It has been proved to be the most cost-effective way for reducing energy consumption to establish and implement new energy efficiency standard. Thus, it is necessary to analyze and evaluate the energy efficiency for overhead crane so as to propose a new energy efficiency standard. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, four kinds of energy consumption sources of overhead crane is considered, based on which, an energy efficiency grading model for overhead crane based on BP neural network is proposed. Second, DS evidential theory is analyzed and based on it, an energy efficiency evaluation model based on BP neural network and DS evidential theory is proposed. The evaluation procedure is discussed in detail. Then, a case is demonstrated how the evaluation is carried out.

Findings

If overhead cranes with different energy consumptions need to be graded according to energy efficiency, the criterions to establish the energy efficiency labels for overhead cranes is proposed in this paper.

Practical implications

The research results can provide energy efficiency standard proposal of overhead crane for relative departments to monitor the design, manufacturing and use of overhead crane.

Originality/value

An energy efficiency grading model for overhead crane based on BP neural network is proposed. An energy efficiency evaluation model based on BP neural network and DS evidential theory is proposed.

Article
Publication date: 8 November 2022

Zesheng Wang, Dongbo Wu, Hui Wang, Jiawei Liang and Jingguang Peng

Assembly errors of aeroengine rotor must be controlled to improve the aeroengine efficiency. However, current method cannot truly reflect assembly errors of the rotor in working…

Abstract

Purpose

Assembly errors of aeroengine rotor must be controlled to improve the aeroengine efficiency. However, current method cannot truly reflect assembly errors of the rotor in working state owing to difficulties in error analysis. Therefore, the purpose of this study is to establish an optimization method for aeroengine rotor stacking assembly.

Design/methodology/approach

The assembly structure of aeroengine rotor is featured. Rotor eccentricity is optimized based on Jacobian–Torsor model. Then, an optimization method for assembly work is proposed. The assembly process of the high-pressure compressor rotor and the high-pressure turbine rotor as the rotor core assembly is mainly considered.

Findings

An aeroengine rotor is assembled to verify the method. The results show that the predicted eccentricity differed from the measured eccentricity by 6.1%, with a comprehensive error of 8.1%. Thus, the optimization method has certain significance for rotor assembly error analysis and assembly process optimization.

Originality/value

In view of the error analysis in the stacking assembly of aeroengine rotor, an innovative optimization method is proposed. The method provides a novel approach for the aeroengine rotor assembly optimization and is applicable for the assembly of high-pressure compressor rotor and high-pressure turbine rotor as the rotor core assembly.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 December 2017

Davy Preuveneers, Wouter Joosen and Elisabeth Ilie-Zudor

Industry 4.0 envisions a future of networked production where interconnected machines and business processes running in the cloud will communicate with one another to optimize…

1404

Abstract

Purpose

Industry 4.0 envisions a future of networked production where interconnected machines and business processes running in the cloud will communicate with one another to optimize production and enable more efficient and sustainable individualized/mass manufacturing. However, the openness and process transparency of networked production in hyperconnected manufacturing enterprises pose severe cyber-security threats and information security challenges that need to be dealt with. The paper aims to discuss these issues.

Design/methodology/approach

This paper presents a distributed trust model and middleware for collaborative and decentralized access control to guarantee data transparency, integrity, authenticity and authorization of dataflow-oriented Industry 4.0 processes.

Findings

The results of a performance study indicate that private blockchains are capable of securing IoT-enabled dataflow-oriented networked production processes across the trust boundaries of the Industry 4.0 manufacturing enterprise.

Originality/value

This paper contributes a decentralized identity and relationship management for users, sensors, actuators, gateways and cloud services to support processes that cross the trust boundaries of the manufacturing enterprise, while offering protection against malicious adversaries gaining unauthorized access to systems, services and information.

Details

Industrial Management & Data Systems, vol. 117 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 4 May 2020

Amaya Erro-Garcés and Irene Aranaz-Núñez

This research aims to conduct, to the best of our knowledge, the first systematic review of the implementation of Industry 4.0 in BRICS. This review facilitates the identification…

Abstract

Purpose

This research aims to conduct, to the best of our knowledge, the first systematic review of the implementation of Industry 4.0 in BRICS. This review facilitates the identification of main factors that affect the readiness to adopt Industry 4.0 in BRICS and the role of different agents, such as multinationals, the public sector or educative institutions.

Design/methodology/approach

Key publications published from 2010 to 2019 have been analysed. A total of 61 papers have been selected from the systematic review.

Findings

Three factors of convergence of BRICS to developed economies in terms of Industry 4.0 are identified: (1) the public initiatives that can also result in the attraction of talent from developed countries to BRICS; (2) the role of multinationals and (3) the implication of educational institutions.

Research limitations/implications

This review has some limitations. First, some grey literature, such as reports from non-governmental organisations and front-line practitioners' reflections, were not included. Second, only research studies in English were reviewed

Practical implications

The heterogeneity of BRICS amongst themselves affects the implementation of Industry 4.0 policies. Therefore, public policies should differ among countries to achieve the different readiness of companies within each country. Industry 4.0 cannot be understood as a manufacturing strategy against delocalisation, as emerging countries, such as BRICS, are also aware of the potential of automation.

Originality/value

Based on a systematic review, this article shows that the strategy created by Germany to increase industrial productivity has been also introduced in BRICS countries as a critical factor to improve their competitiveness.

Details

Journal of Manufacturing Technology Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 6 of 6