Search results

1 – 2 of 2
To view the access options for this content please click here
Article

Fiaz Ahmad, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

The purpose of this paper is to propose successive-over-relaxation (SOR) based recursive Bayesian approach (RBA) for the configuration identification of a Power System

Abstract

Purpose

The purpose of this paper is to propose successive-over-relaxation (SOR) based recursive Bayesian approach (RBA) for the configuration identification of a Power System. Moreover, to present a comparison between the proposed method and existing RBA approaches regarding convergence speed and robustness.

Design/methodology/approach

Swift power network configuration identification is important for adopting the smart grid features like power system automation. In this work, a new SOR-based numerical approach is adopted to increase the convergence speed of the existing RBA algorithm and at the same time maintaining robustness against noise. Existing RBA and SOR-RBA are tested on IEEE 6 bus, IEEE 14 bus networks and 48 bus Danish Medium Voltage distribution network in the MATLAB R2014b environment and a comparative analysis is presented.

Findings

The comparison of existing RBA and proposed SOR-RBA is performed, which reveals that the latter has good convergence speed compared to the former RBA algorithms. Moreover, it is robust against bad data and noise.

Originality value

Existing RBA techniques have slow convergence and are also prone to measurement noise. Their convergence speed is effected by noisy measurements. In this paper, an attempt has been made to enhance convergence speed of the new identification algorithm while keeping its numerical stability and robustness during noisy measurement conditions. This work is novel and has drastic improvement in the convergence speed and robustness of the former RBA algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Fiaz Ahmad, Kabir Muhammad Abdul Rashid, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

To propose an improved algorithm for the state estimation of distribution networks based on the unscented Kalman filter (IUKF). The performance comparison of unscented…

Abstract

Purpose

To propose an improved algorithm for the state estimation of distribution networks based on the unscented Kalman filter (IUKF). The performance comparison of unscented Kalman filter (UKF) and newly developed algorithm, termed Improved unscented Kalman Filter (IUKF) for IEEE-30, 33 and 69-bus radial distribution networks for load variations and bad data for two measurement noise scenarios, i.e. 30 and 50 per cent are shown.

Design/methodology/approach

State estimation (SE) plays an instrumental role in realizing smart grid features like distribution automation (DA), enhanced distribution generation (DG) penetration and demand response (DR). Implementation of DA requires robust, accurate and computationally efficient dynamic SE techniques that can capture the fast changing dynamics of distribution systems more effectively. In this paper, the UKF is improved by changing the way the state covariance matrix is calculated, to enhance its robustness and accuracy under noisy measurement conditions. UKF and proposed IUKF are compared under the cummulative effect of load variations and bad data based on various statistical metrics such as Maximum Absolute Deviation (MAD), Maximum Absolute Per cent Error (MAPE), Root Mean Square Error (RMSE) and Overall Performance Index (J) for three radial distribution networks. All the simulations are performed in MATLAB 2014b environment running on an hp core i5 laptop with 4GB memory and 2.6 GHz processor.

Findings

An Improved Unscented Kalman Filter Algorithm (IUKF) is developed for distribution network state estimation. The developed IUKF is used to predict network states (voltage magnitude and angle at all buses) and measurements (source voltage magnitude, line power flows and bus injections) in the presence of load variations and bad data. The statistical performance of the coventional UKF and the proposed IUKF is carried out for a variety of simulation scenarios for IEEE-30, 33 and 69 bus radial distribution systems. The IUKF demonstrated superiority in terms of: RMSE; MAD; MAPE; and overall performance index J for two measurement noise scenarios (30 and 50 per cent). Moreover, it is shown that for a measurement noise of 50 per cent and above, UKF fails while IUKF performs.

Originality/value

UKF shows degraded performance under high measurement noise and fails in some cases. The proposed IUKF is shown to outperform the UKF in all the simulated scenarios. Moreover, this work is novel and has justified improvement in the robustness of the conventional UKF algorithm.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2