Search results

1 – 10 of over 15000
Open Access
Article
Publication date: 17 January 2023

Xing Ying

The purpose of this paper investigates dynamic ease distributions of clothes at bust and waist lines with different body surface angle by using a Qualisys three-dimensional motion…

Abstract

Purpose

The purpose of this paper investigates dynamic ease distributions of clothes at bust and waist lines with different body surface angle by using a Qualisys three-dimensional motion capture system (3DMCS).

Design/methodology/approach

The current method first obtain the specific markers of participants and their clothes along the bust and waist lines through 3DMCS, then using the least square method and four piecewise polynomial fitting participants and their clothes' bust and waist curves. The coordinates of the markers were tracked by the 3DMCS, while the participants under different body surface angle walked on a treadmill calculated the distances of markers coordinates to the participants' bust and waist curves. Finally, the data of samples were analyzed. It was found that the dynamic ease distributions showed different patterns at different body surface angle.

Findings

The results revealed the bust convex angle is 26.53 degrees (Specification:X3) and back slope angle is 13.96 degrees (Specification: Y1), the fluctuation of participant ease distributions on bust section was most obvious, and the maximum fluctuation value was ±20 mm and ±25 mm. The ease distributions of participant waist section fluctuated most obviously when the bust convex angle is 28.10 degrees (Specification: X5) and the back slope angle is 13.96 degrees (Specification: Y1), and the maximum fluctuation was ±30 mm and ±20 mm. The bust convex angle has the greatest influence on 1# garment, and the back slope angle has the greatest influence on 2# garment.

Originality/value

Currently, there is little information in the literature about dynamic ease distributions of garment on a different body types. This paper takes different body surface angles as the research objects to analyze the ease distributions of different clothes, the conclusion can provide reference data for 3D garment modeling and improve the authenticity of virtual garment fitting.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 December 2020

Xing Xie, Zhenlin Li, Baoshan Zhu and Hong Wang

This study aims to complete the optimization design of a centrifugal impeller with both high aerodynamic efficiency and good structural machinability.

Abstract

Purpose

This study aims to complete the optimization design of a centrifugal impeller with both high aerodynamic efficiency and good structural machinability.

Design/methodology/approach

First, the design parameters were derived from the blade loading distribution and the meridional geometry in the impeller three-dimensional (3D) inverse design. The blade wrap angle at the middle span surface and the spanwise averaged blade angle at the blade leading edge obtained from inverse design were chosen as the machinability objectives. The aerodynamic efficiency obtained by computational fluid dynamics was selected as the aerodynamic performance objective. Then, using multi-objective optimization with the optimal Latin hypercube method, quadratic response surface methodology and the non-dominated sorting genetic algorithm, the trade-off optimum impellers with small blade wrap angles, large blade angles and high aerodynamic efficiency were obtained. Finally, computational fluid dynamics and computer-aided manufacturing were performed to verify the aerodynamic performance and structural machinability of the optimum impellers.

Findings

Providing the fore maximum blade loading distribution at both the hub and shroud for the 3D inverse design helped to promote the structural machinability of the designed impeller. A straighter hub coupled with a more curved shroud also facilitated improvement of the impeller’s structural machinability. The preferred impeller was designed by providing both the fore maximum blade loading distribution at a relatively straight hub and a curved shroud for 3D inverse design.

Originality/value

The machining difficulties of the designed high-efficiency impeller can be reduced by reducing blade wrap angle and enlarging blade angle at the beginning of impeller design. It is of practical value in engineering by avoiding the follow-up failure for the machining of the designed impeller.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 12 October 2022

Chenhao Wei, Gang Lin, Jun Huang, Lei Song and Howard Smith

Unlike conventional aircraft, birds can glide without a vertical tail. The purpose of this paper is to analyse the influence of dihedral angle spanwise distribution on…

Abstract

Purpose

Unlike conventional aircraft, birds can glide without a vertical tail. The purpose of this paper is to analyse the influence of dihedral angle spanwise distribution on lateral-directional dynamic stability by the simulation, calculation in the development of the bird-inspired aircraft and the flight testing.

Design/methodology/approach

The gliding magnificent frigatebird (Fregata magnificens) was selected as the study object. The geometric and mass model of the study object were developed. Stability derivatives and moments of inertia were obtained. The lateral-directional stability was assessed under different spanwise distributions of dihedral angle. A bird-inspired aircraft was developed, and a flight test was carried out to verify the analysed results.

Findings

The results show that spanwise distribution changing of dihedral angle has influence on the lateral-directional mode stability. All of the analysed configurations have convergent Dutch roll mode and rolling mode. The key role of dihedral angle changing is to achieve a convergent spiral mode. Flight test results show that the bird-inspired aircraft has a well-convergent Dutch roll mode.

Practical implications

The theory that birds can achieve its lateral-directional stability by changing its dihedral angle spanwise distribution may explain the stability mechanism of gliding birds.

Originality/value

This paper helps to improve the understanding of bird gliding stability mechanism and provides bio-inspired solutions in aircraft designing.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 May 2018

Ming Liu, Lei Tan, Yabin Liu, Yun Xu and Shuliang Cao

This paper aims to investigate the effect of three-dimensional (3D) inlet guide vanes (IGVs) on performance of a centrifugal pump.

Abstract

Purpose

This paper aims to investigate the effect of three-dimensional (3D) inlet guide vanes (IGVs) on performance of a centrifugal pump.

Design/methodology/approach

A design method for 3D IGVs is proposed based on the controllable velocity moment, which is determined by a fourth-order dimensionless function. Numerical simulation of the centrifugal pump with IGVs is carried out by solving the Reynolds-averaged Navier–Stokes equations. The method of frozen rotor is applied to couple the stationary and rotational domain.

Findings

The efficiency of pump with 3D IGVs is higher than that with 2D IGVs for most prewhirl angles, which validate the advancement of 3D IGVs on prewhirl regulation. The effect of prewhirl regulation at small flow rate is more significant than that at large flow rate.

Originality/value

A prediction model of velocity moment based on the Oseen vortex is proposed to describe the flow pattern downstream the IGVs.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 July 2022

Ashish R. Prajapati, Harshit K. Dave and Harit K. Raval

The fiber reinforced polymer composites are becoming more critical because of their exceptional mechanical properties and lightweight structures. Fused filament fabrication (FFF…

Abstract

Purpose

The fiber reinforced polymer composites are becoming more critical because of their exceptional mechanical properties and lightweight structures. Fused filament fabrication (FFF) is a three-dimensional (3D) printing technique that can manufacture composite structures. However, the effect of impact performance on the structural integrity of FFF made composites compared to the pre-preg composites is a primary concern for the practical usage of 3D printed parts. Therefore, this paper aims to investigate the effect of different processing parameters on the impact performance of 3D printed composites.

Design/methodology/approach

This paper investigates the impact of build orientation, fiber stacking sequence and fiber angle on the impact properties. Two build orientations, three fiber stacking sequences and two different fiber angles have been selected for this study. Charpy impact testing is carried out to investigate the impact energy absorption of the parts. Onyx as a matrix material and two different types of fibers, that is, fiberglass and high strength high temperature (HSHT) fiberglass as reinforcements, are used for the fabrication.

Findings

Results indicate that build orientation and fiber angle largely affect the impact performance of composite parts. The composite part built with XYZ orientation, 0º/90º fiber angle and B type fiber stacking sequence resulted into maximum impact energy. However, comparing both types of fiber reinforcement, HSHT fiberglass resulted in higher impact energy than regular fiberglass.

Originality/value

This study evaluates the damage modes during the impact testing of the 3D printed composite parts. The impact energy absorbed by the composite samples during the impact testing is measured to compare the effect of different processing conditions. The investigation of different types of fiberglass reinforced with Onyx material is very limited for the FFF-based process. The results also provide a database to select the different parameters to obtain the required impact properties.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 August 2020

Lukas Englert, Stefan Dietrich and Pascal Pinter

The purpose of this paper is to understand the relationship between defect properties and the tool path used for generating additively manufactured parts. The correlation between…

Abstract

Purpose

The purpose of this paper is to understand the relationship between defect properties and the tool path used for generating additively manufactured parts. The correlation between processing strategy and porosity architecture is one of the key aspects for a precise understanding of defect formation and possibilities for defect reduction.

Design/methodology/approach

The authors present a new combined geometry, processing path and porosity analysis procedure based on the use of x-ray computed micro tomography image data and numerical control programming code. The procedure allows for a covisualisation of the track of the respective processing head with the three-dimensional microstructure data.

Findings

The presented method yields statistical results about defect distribution and morphologies introduced by the respective process characteristics in parts. The functionality of the proposed procedure is demonstrated on an aluminum (AlSi10Mg) and a polylactide test sample to show the additional insight found for both additive manufacturing processes and the resulting microstructural properties.

Originality/value

The novelty of this paper is the analysis of the porosity with respect to the underlying additive process zone and the sample geometry.

Article
Publication date: 2 March 2022

Yifang Sun, Chunxu Duan, Renfu Li and Chenghu Li

The purpose of this paper is to study the combined effects of inlet airflow temperature and the expansion angle of the upper expansion surface (upper expansion angle) on the…

Abstract

Purpose

The purpose of this paper is to study the combined effects of inlet airflow temperature and the expansion angle of the upper expansion surface (upper expansion angle) on the performance of the scramjet nozzle.

Design/methodology/approach

The Spalart-Allmaras turbulence two-dimensional model of the nozzle is established for the study. The influence of inlet airflow temperature on the performance of the nozzle is analyzed by detecting the change of the wall pressure of the nozzle. The three angles are chosen for the upper expansion angle (βb) in the model: 8°, 12° and 16°. The temperature of inlet airflow is 600–1,800 K.

Findings

The study results show that when the βb is 8° and 16°, the wall pressure of the nozzle has a complicated and large fluctuation with the inlet airflow temperature, while the wall pressure has little change as βb is 12°; the thrust coefficient, pitching moment coefficient and lift coefficient of the nozzle fluctuate greatly with the increase of the inlet airflow temperature when βb is 8° and 16°, while the thrust coefficient, pitching moment coefficient and lift coefficient have little fluctuation as βb is 12°.

Originality/value

The study of the combined effects of the inlet airflow temperature and upper expansion angle on the performance of the scramjet nozzle can provide guidance for the design of scramjet nozzles.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 February 2007

Tong Fang, Sony Mathew, Michael Osterman and Michael Pecht

This paper aims to present a methodology for estimating the risk of component level electrical bridging failures from unattached conductive (tin) whiskers.

Abstract

Purpose

This paper aims to present a methodology for estimating the risk of component level electrical bridging failures from unattached conductive (tin) whiskers.

Design/methodology/approach

Based on experimental data an algorithm was developed and assessed by further experiments. The risk estimate is based on whisker parameters, generated from experiments over a period of time. A bridging failure risk is defined as the probability of a conductive whisker landing between two isolated electrical conductors. A probabilistic estimate for electrical bridging failure risk is achieved by randomly sampling distributions of conductive whisker length, deposition angle, and density for a defined electrical structure. A fine pitch quad flat package attached to a printed wiring board is used as test vehicle to verify the risk estimate.

Findings

The estimated risk is found to be higher than planned in the experimental test. The lower experimentally determined risk was found to be the result of high contact resistance between the conductive whisker and the electrical conductors that form the unintended circuit. Contact resistance between the whisker and electrical conductors was found to mitigate the whisker shorting risk.

Originality/value

This is the first attempt to quantify the risk failure due to unattached conductive whiskers in electronic products. A methodology for estimating electrical bridging risk due to unattached conductive whiskers is provided. Contact resistance of conductive whiskers is found to be a critical issue that may be mitigate failure risks.

Details

Circuit World, vol. 33 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 September 2023

Chao Zhang, Jianxin Fu and Yu Wang

The interaction between rock mass structural planes and dynamic stress levels is important to determine the stability of rock mass structures in underground geotechnical…

Abstract

Purpose

The interaction between rock mass structural planes and dynamic stress levels is important to determine the stability of rock mass structures in underground geotechnical engineering. In this work, the authors aim to focus on the degradation effects of fracture geometric parameters and unloading stress paths on rock mechanical properties.

Design/methodology/approach

A three-dimensional Particle Flow Code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of granite specimens containing prefabricated cracks under conventional triaxial compression and triaxial unilateral unloading. The authors demonstrated the unique mechanical response of prefabricated fractured rock under two conditions. The crack initiation, propagation, and coalescence process of pre-fissured specimens were analyzed in detail.

Findings

The authors show that the prefabricated cracks and unilateral unloading conditions not only deteriorate the mechanical strength but also have significant differences in failure modes. The degrading effect of cracks on model strength increases linearly with the decrease of the dip angle. Under the condition of true triaxial unilateral unloading, the deterioration effect of peak strength of rock is very significant, and unloading plays a role in promoting the instability failure of rock after peak, making the rock earlier instability failure. Associating with the particle vector diagram and crack coalescence process, the authors find that model failure mode under unilateral loading conditions is obviously distinct from that in triaxial loading. The peak strain in the unloading direction increases sharply, resulting in a new shear slip.

Originality/value

This study is expected to improve the understanding of the strength failure and cracking behavior of fractured rock under unilateral unloading.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 July 2020

Elakkiya A., Radha Sankararajan, Sreeja B.S. and Manikandan E.

A novel and simple six-band metamaterial absorber is proposed in the terahertz region, which is composed of an I-shaped absorber and circular ring with four gaps and a continuous…

Abstract

Purpose

A novel and simple six-band metamaterial absorber is proposed in the terahertz region, which is composed of an I-shaped absorber and circular ring with four gaps and a continuous metal ground plane separated by only 0.125 mm polyimide dielectric substrate. Initially, I-shaped resonator gives three bands at 0.4, 0.468 and 0.4928 THz with the absorptivity of 99.3%, 97.9% and 99.1%, respectively. The purpose of this paper is to improve the number of bands, for which the authors added the circular ring with four gaps, so the simulated metamaterial absorber exhibited six absorption peaks at 0.3392, 0.3528, 0.3968, 0.4676, 0.4768 and 0.492 THz, with the absorption rate of 91.4%, 94.2%, 94.9%, 90.3%, 77.5% and 97.4%, respectively. The surface current distribution and angle independence are explained for all the six frequencies which are used to analyze the absorption mechanism clearly. Structure maximum uses the squares and circles, so it will make the fabrication easy. The multiband absorbers obtained here have potential applications in many engineering technology, thermal radiation, material detection and imaging and optoelectronic areas.

Design/methodology/approach

This paper presents the design of the six-band metamaterial absorber which is from the I-shaped resonator and circular ring with four gaps and the metallic ground plane separated by the 0.125 polyimide dielectric substrate. The absorber exhibited six absorption peaks at 0.3392, 0.3528, 0.3968, 0.4676, 0.4768 and 0.492 THz, with the absorption rate of 91.4%, 94.2%, 94.9%, 90.3%, 77.5% and 97.4%, respectively. From the fabrication point of view, the proposed six-band metamaterial absorber has a very simple geometrical structure, and it is very easy to be fabricated.

Findings

The authors present a new and simple design of six-band absorber based on an I-shaped absorber and circular ring with four gaps and a metallic ground plane separated by a polyimide layer having the thickness of 0.125 mm. Six different resonance absorption peaks are found at 0.3392, 0.3528, 0.3968, 0.4676 , 0.4768 and 0.492 THz. Surface current distribution and angle independence plot have been studied to understand the absorption behavior of the designed terahertz metamaterial absorber.

Originality/value

The multiband absorbers obtained here have potential applications in many engineering technology, thermal radiation, material detection, security, sensors, imaging and optoelectronic areas.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 15000