Search results

1 – 10 of over 1000
Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 March 2022

Karthick R., Ramakrishnan C. and Sridhar S.

This paper aims to introduce the quasi impedance source inverter (qZSI)-based static compensator (STATCOM), which is incorporated into the hybrid distributed power generation…

Abstract

Purpose

This paper aims to introduce the quasi impedance source inverter (qZSI)-based static compensator (STATCOM), which is incorporated into the hybrid distributed power generation system for enhancement of power quality. The distributed power generation system includes the photovoltaic (PV), wind energy conversion system (WECS) and battery energy storage system.

Design/methodology/approach

The WECS is used by the self-excited induction generator (SEIG) and the flywheel energy storage system (FESS). To regulate its terminal voltage and frequency, the SEIG requires adjustable volt-ampere reactive (VAR). A combination of a STATCOM and a fixed condenser bank usually serves to satisfy the VAR demand. The maximum correntropy criterion-based adaptive filter technique (AFT) is proposed to control the qZSI-STATCOM and to guarantee that the voltage at the SEIG terminal is harmonic-free while providing non-linear three-phase and single-phase loads.

Findings

The coordinated operation of the suggested voltage control and flywheel control systems ensures that load voltage and frequency are retained in their respective values at very low harmonic distortions regardless of wind speed and load variation. The simulation and experimental studies are carried out under different load conditions to validate the efficiencies of the PV-assisted STATCOM.

Originality/value

To improve system stability and minimize total costs, extra load current sensors can also be avoided. This paper proposes to control the SEIG terminal voltage and harmonic elimination in the standalone WECS systems using maximum correntropy criterion-based AFT with a fuzzy logic controller.

Article
Publication date: 16 November 2023

Abdeldjabar Benrabah, Farid Khoucha, Ali Raza and Mohamed Benbouzid

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith…

Abstract

Purpose

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith predictor active disturbance rejection control (SP-ADRC) associated with a speed/position estimator.

Design/methodology/approach

The estimator consists of a sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the permanent magnet synchronous generator (PMSG) rotor position and speed. At the same time, the SP-ADRC is applied to the speed control loop of the variable-speed WECS control system to adapt strongly to dynamic characteristics under parameter uncertainties and disturbances.

Findings

Numerical simulations are conducted to evaluate the speed tracking performances under various wind speed profiles. The results show that the proposed sensorless speed control improves the accuracy of rotor speed and position estimation and provides better power tracking performance than a regular ADRC controller under fast wind speed variations.

Practical implications

This paper offers a new approach for designing sensorless, robust control for PMSG-based WECSs.

Originality/value

A new sensorless, robust control is proposed to improve the stability and tracking performance of PMSG-based WECSs. The SP-ADRC control attenuates the effects of parameter uncertainties and disturbances and eliminates the time-delay impact. The sensorless control design based on SMO and PLL improves the accuracy of rotor speed estimation and reduces the chattering problem of traditional SMO. The obtained results support the theoretical findings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 April 2021

Faruk Bulut, Melike Bektaş and Abdullah Yavuz

In this study, supervision and control of the possible problems among people over a large area with a limited number of drone cameras and security staff is established.

Abstract

Purpose

In this study, supervision and control of the possible problems among people over a large area with a limited number of drone cameras and security staff is established.

Design/methodology/approach

These drones, namely unmanned aerial vehicles (UAVs) will be adaptively and automatically distributed over the crowds to control and track the communities by the proposed system. Since crowds are mobile, the design of the drone clusters will be simultaneously re-organized according to densities and distributions of people. An adaptive and dynamic distribution and routing mechanism of UAV fleets for crowds is implemented to control a specific given region. The nine popular clustering algorithms have been used and tested in the presented mechanism to gain better performance.

Findings

The nine popular clustering algorithms have been used and tested in the presented mechanism to gain better performance. An outperformed clustering performance from the aggregated model has been received when compared with a singular clustering method over five different test cases about crowds of human distributions. This study has three basic components. The first one is to divide the human crowds into clusters. The second one is to determine an optimum route of UAVs over clusters. The last one is to direct the most appropriate security personnel to the events that occurred.

Originality/value

This study has three basic components. The first one is to divide the human crowds into clusters. The second one is to determine an optimum route of UAVs over clusters. The last one is to direct the most appropriate security personnel to the events that occurred.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 30 October 2023

Yaoyao Tuo, Junyang Li and Yankui Song

This paper aims to design an event-triggered adaptive prescribed performance controller for flexible manipulators, with the primary objectives of achieving output performance…

Abstract

Purpose

This paper aims to design an event-triggered adaptive prescribed performance controller for flexible manipulators, with the primary objectives of achieving output performance constraints and addressing communication resource limitations.

Design/methodology/approach

The authors propose a novel prescribed performance barrier Lyapunov function (PP-BLF) that considers both output and tracking performance constraints. The PP-BLF ensures that the system's output, transient behavior and steady-state performance, adhere to prescribed constraints. The boundary of the PP-BLF is established by an exponential function that decays over time. Notably, the PP-BLF can be applied seamlessly in unconstrained cases without necessitating controller redesign. Moreover, the controller design incorporates an event-triggered mechanism, effectively reducing the frequency of controller updates and optimizing the utilization of communication resources. Additionally, the authors employ adaptive techniques to estimate the system's unknown parameters and approximate unknown nonlinear functions using radial basis function neural networks (RBFNN). To address the challenge of “complexity explosion”, dynamic surface technology is employed.

Findings

Numerical simulations are conducted under five different cases to verify the effectiveness of the proposed controller. The results demonstrate that the controller successfully constrains the output tracking error within the prescribed performance boundary. Moreover, compared with the traditional time-triggered mechanism, the event-triggered mechanism significantly reduces the controller's update frequency, resolving the problem of limited communication resources.

Originality/value

The paper reduces the update frequency of control signals and improves resource utilization through an event-triggered mechanism in the form of relative thresholds. The authors recognize that the event-triggered mechanism may impact the output performance of the system. To address this challenge, the authors propose a prescribed performance Barrier Lyapunov Function (PP-BLF). The PP-BLF is designed to effectively constrain the output performance of the system, ensuring satisfactory control even when the control signal updates are reduced.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Article
Publication date: 13 October 2023

Kai Wang, Jiaying Liu, Shuai Yang, Jing Guo and Yongzhen Ke

This paper aims to automatically obtain the implant parameter from the CBCT images to improve the outcome of implant planning.

Abstract

Purpose

This paper aims to automatically obtain the implant parameter from the CBCT images to improve the outcome of implant planning.

Design/methodology/approach

This paper proposes automatic simulated dental implant positioning on CBCT images, which can significantly improve the efficiency of implant planning. The authors introduce the fusion point calculation method for the missing tooth's long axis and root axis based on the dental arch line used to obtain the optimal fusion position. In addition, the authors proposed a semi-interactive visualization method of implant parameters that be automatically simulated by the authors' method. If the plan does not meet the doctor's requirements, the final implant plan can be fine-tuned to achieve the optimal effect.

Findings

A series of experimental results show that the method proposed in this paper greatly improves the feasibility and accuracy of the implant planning scheme, and the visualization method of planting parameters improves the planning efficiency and the friendliness of system use.

Originality/value

The proposed method can be applied to dental implant planning software to improve the communication efficiency between doctors, patients and technicians.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2023

Radha Subramanyam, Y. Adline Jancy and P. Nagabushanam

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data…

Abstract

Purpose

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in wireless sensor network (WSN) and Internet of Things (IoT) applications. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes. Game theory optimization for distributed may increase the network performance. The purpose of this study is to survey the various operations that can be carried out using distributive and adaptive MAC protocol. Hill climbing distributed MAC does not need a central coordination system and location-based transmission with neighbor awareness reduces transmission power.

Design/methodology/approach

Distributed MAC in wireless networks is used to address the challenges like network lifetime, reduced energy consumption and for improving delay performance. In this paper, a survey is made on various cooperative communications in MAC protocols, optimization techniques used to improve MAC performance in various applications and mathematical approaches involved in game theory optimization for MAC protocol.

Findings

Spatial reuse of channel improved by 3%–29%, and multichannel improves throughput by 8% using distributed MAC protocol. Nash equilibrium is found to perform well, which focuses on energy utility in the network by individual players. Fuzzy logic improves channel selection by 17% and secondary users’ involvement by 8%. Cross-layer approach in MAC layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in WSN and IoT applications. Cross-layer and cooperative communication give energy savings of 27% and reduces hop distance by 4.7%. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes.

Research limitations/implications

Other optimization techniques can be applied for WSN to analyze the performance.

Practical implications

Game theory optimization for distributed may increase the network performance. Optimal cuckoo search improves throughput by 90% and reduces delay by 91%. Stochastic approaches detect 80% attacks even in 90% malicious nodes.

Social implications

Channel allocations in centralized or static manner must be based on traffic demands whether dynamic traffic or fluctuated traffic. Usage of multimedia devices also increased which in turn increased the demand for high throughput. Cochannel interference keep on changing or mitigations occur which can be handled by proper resource allocations. Network survival is by efficient usage of valid patis in the network by avoiding transmission failures and time slots’ effective usage.

Originality/value

Literature survey is carried out to find the methods which give better performance.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Book part
Publication date: 5 April 2024

Emir Malikov, Shunan Zhao and Jingfang Zhang

There is growing empirical evidence that firm heterogeneity is technologically non-neutral. This chapter extends the Gandhi, Navarro, and Rivers (2020) proxy variable framework…

Abstract

There is growing empirical evidence that firm heterogeneity is technologically non-neutral. This chapter extends the Gandhi, Navarro, and Rivers (2020) proxy variable framework for structurally identifying production functions to a more general case when latent firm productivity is multi-dimensional, with both factor-neutral and (biased) factor-augmenting components. Unlike alternative methodologies, the proposed model can be identified under weaker data requirements, notably, without relying on the typically unavailable cross-sectional variation in input prices for instrumentation. When markets are perfectly competitive, point identification is achieved by leveraging the information contained in static optimality conditions, effectively adopting a system-of-equations approach. It is also shown how one can partially identify the non-neutral production technology in the traditional proxy variable framework when firms have market power.

1 – 10 of over 1000