Search results

1 – 10 of 102
Article
Publication date: 5 February 2018

Mohamed Ghazi Al-Fandi, Nid’a Hamdan Alshraiedeh, Rami Joseph Oweis, Rawan Hassan Hayajneh, Iman Riyad Alhamdan, Rama Adel Alabed and Omar Farhan Al-Rawi

This paper aims to report a prototype of a reliable method for rapid, sensitive bacterial detection by using a low-cost zinc oxide nanorods (ZnONRs)-based electrochemical sensor.

Abstract

Purpose

This paper aims to report a prototype of a reliable method for rapid, sensitive bacterial detection by using a low-cost zinc oxide nanorods (ZnONRs)-based electrochemical sensor.

Design/methodology/approach

The ZnONRs have been grown on the surface of a disposable, miniaturized working electrode (WE) using the low-temperature hydrothermal technique. Scanning electron microscopy and energy dispersion spectroscopy have been performed to characterize the distribution as well as the chemical composition of the ZnONRs on the surface, respectively. Moreover, the cyclic voltammetry test has been implemented to assess the effect of the ZnONRs on the signal conductivity between −1 V and 1 V with a scan rate of 0.01 V/s. Likewise, the effect of using different bacterial concentrations in phosphate-buffered saline has been investigated.

Findings

The morphological characterization has shown a highly distributed ZnONR on the WE with uneven alignment. Also, the achieved response time was about 12 minutes and the lower limit of detection was approximately 103 CFU abbreviation for Colony Forming Unit/mL.

Originality/value

This paper illustrates an outcome of an experimental work on a ZnONRs-based electrochemical biosensor for direct detection of bacteria.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2003

Robert W. Bogue

This paper considers the role of biosensors for monitoring the environment. A selection of existing products and competitive techniques such as biochemical assays and laboratory…

1362

Abstract

This paper considers the role of biosensors for monitoring the environment. A selection of existing products and competitive techniques such as biochemical assays and laboratory analysis which presently dominate the business are discussed. A number of research activities and themes are considered. Conclusion are drawn on the prospects for environmental biosensors.

Details

Sensor Review, vol. 23 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 July 2022

Bjorn John Stephen, Surabhi Suchanti, Devendra Jain, Harshdeep Dhaliwal, Vikram Sharma, Ramandeep Kaur, Rajeev Mishra and Abhijeet Singh

Neglected tropical diseases (NTDs) are a set of infectious diseases that primarily affect low-income countries situated near the equator. Effective diagnostic tools hold the key…

Abstract

Purpose

Neglected tropical diseases (NTDs) are a set of infectious diseases that primarily affect low-income countries situated near the equator. Effective diagnostic tools hold the key to stemming the spread of these infectious diseases. However, specificity is a major concern associated with current diagnostic protocols. In this regard, electrochemical deoxyribonucleic acid (DNA) biosensors could play a crucial role, as highlighted by renewed interest in their research. The purpose of this study was to highlight the current scenario for the design and development of biosensors for the detection of NTDs related pathogens. This review highlights the different types of factors involved and the modifications used to enhance sensor properties.

Design/methodology/approach

The authors discuss the potential of electrochemical DNA biosensors as efficient, affordable diagnostic tools for the detection of pathogens associated with NTDs by reviewing available literature. This study discusses the biosensor components, mainly the probe selection and type of electrodes used, and their potential to improve the overall design of the biosensor. Further, this study analyses the different nanomaterials used in NTD-based electrochemical DNA biosensors and discusses how their incorporation could improve the overall sensitivity and specificity of the biosensor design. Finally, this study examines the impact such techniques could have in the future on mass screening of NTDs.

Findings

The findings provide an in-depth analysis of electrochemical DNA biosensors for the detection of pathogens associated with NTDs.

Originality/value

This review provides an update on the different types and modifications of DNA biosensors that have been designed for the diagnosis of NTD-related pathogens.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 2005

Robert Bogue

This paper discusses the size and structure of the global biosensor market which is presently dominated by medical applications.

1737

Abstract

Purpose

This paper discusses the size and structure of the global biosensor market which is presently dominated by medical applications.

Design/methodology/approach

It considers a number of recent developments based on nanotechnology.

Findings

Identifies homeland security as an emerging area offering significant prospects for technological innovation and market growth.

Originality/value

Of interest to those concerned with technology developments.

Details

Sensor Review, vol. 25 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 June 2019

İlker Polatoğlu and Fehime Cakıcıoglu Ozkan

This paper aims to present a novel and cost-effective optical biosensor design by simple preparation method for detection of “parathion-methyl,” which is a model pesticide pose to…

Abstract

Purpose

This paper aims to present a novel and cost-effective optical biosensor design by simple preparation method for detection of “parathion-methyl,” which is a model pesticide pose to public health and the environment.

Design/methodology/approach

The optical enzyme biosensor (TCA) for detection of pesticide “parathion-methyl” was developed on the basis of immobilization of tyrosinase enzyme on chitosan film by adsorption technique. The analytic performance of TCA was investigated by measuring its activity with Ultraviolet (UV) visible spectrophotometer.

Findings

Uniform porous network structure and protonated groups of chitosan film provided a microenvironment for tyrosinase immobilization evident from Fourier transform infrared (FTIR) spectroscopy and Atomic Force Microscopy analysis. TCA has a wide linear detection range (0-1.03 µM) with high correlation coefficient and it can detect the parathion-methyl concentration as low as 159 nM by noncompetitive inhibition kinetics. Using the TCA sensor both for ten times and at least 45 days without a significant loss in its activity are the indicators of its good operational and storage stability. Moreover, TCA can be applicable to tap water, providing a promising tool for pesticides detection.

Originality/value

This is the first time to use the in situ analytical technique that can improve the performance of optical enzyme sensor provided to control the pesticide residue better with respect to traditional techniques. The effect of organic solvents on the performance of optical enzyme biosensor was investigated. Inhibition kinetic of the solvents rarely encountered in literature was also studied besides the pH and temperature tolerance of the optical biosensor.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Hamza Usman, Muhammad Hafiz Abu Bakar, Amir Syahir Hamzah and Abu bakar Salleh

This paper aims to estimate the level of histamine in fish and fish products, as it is very important because of their implication in fish poisoning in humans; hence, ascertaining…

Abstract

Purpose

This paper aims to estimate the level of histamine in fish and fish products, as it is very important because of their implication in fish poisoning in humans; hence, ascertaining histamine levels in the aforementioned serves as a chemical index for spoilage.

Design/methodology/approach

A technique was developed to immobilize an ordered multilayer of diamine oxidase (DAO) by means of chemical cross-linking on the biconical taper surface stepwisely alternating between chitosan, glutaraldehyde and the enzyme. A spectrophotometric signal results from horseradish peroxidase catalyzed reduction of H2O2, a secondary product of the oxidative deamination of histamine monitored at 450 nm.

Findings

The biosensor showed a linear response range up to 1.5 mM, a good sensitivity of 0.64 mM-1 with detection and quantification limits towards histamine of 0.086 mM (15.8 ppm) and 0.204 mM (37.7 ppm) and a linear response range of 0-1.5 mM. It showed a response and recovery time of 14 sec and operational stability up to 40 repeated analyses without significant loss of sensitivity.

Practical implications

The developed biosensor has a good potential for use in the quantitative determination of histamine in seafood.

Originality/value

The paper described an outcome of an experimental work on tapered fibre optics (taper)-based biosensor coated with DAO embedded into a chitosan membrane to measure histamine.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 January 2008

Robert Bogue

This paper seeks to consider recent nanosensor developments and the various routes to market through reference to companies which are commercialising these products.

3320

Abstract

Purpose

This paper seeks to consider recent nanosensor developments and the various routes to market through reference to companies which are commercialising these products.

Design/methodology/approach

This paper initially discusses nanosensor markets and applications. It then illustrates progress in commercial exploitation by considering a number of nanosensor companies and their products.

Findings

This paper shows that the commercialisation of nanosensors is still in its infancy but a range of products is now reaching the market. In addition to probes for atomic force and scanning probe microscopy, which presently comprise the bulk of the market, innovative biosensors, gas and chemical sensors are having a growing impact. Many of the supply companies are US‐based with strong links to universities and have frequently raised significant venture finance and subsequent funds from government agencies involved with defence, homeland security and healthcare. Several of the world's large, high‐technology companies are also pursuing nanosensor developments.

Originality/value

This paper provides an insight into the present‐day state of nanosensor commercialisation and gives examples of nanosensor companies and their products.

Details

Sensor Review, vol. 28 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1990

As sensor research and development continues, spotting market niches is becoming a full time job, as Stephen McClelland explains.

Abstract

As sensor research and development continues, spotting market niches is becoming a full time job, as Stephen McClelland explains.

Details

Sensor Review, vol. 10 no. 1
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 1 December 2005

Robert Bogue

151

Abstract

Details

Sensor Review, vol. 25 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 102