Search results

1 – 10 of 13
Article
Publication date: 15 December 2023

Xia Sun, Jianben Xu, Caili Yu and Faai Zhang

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level…

Abstract

Purpose

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level and monomer ratio of the dispersant.

Design/methodology/approach

The dispersant was synthesized by conventional radical polymerization using methacrylic acid, butyl acrylate and dimethylamino ethyl methacrylate as the monomer. It was characterized by Fourier transform infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, gel permeation chromatography and thermogravimetric analysis. The dispersant was used to disperse TiO2, and the performance of the dispersant was evaluated by measuring the viscosity, particle size and dispersive force of the slurry.

Findings

The dispersant exhibited high thermal stability and was successfully anchored to the surface of the TiO2 pigment. When used to disperse a TiO2 slurry, it effectively made the TiO2 slurry more fluid, indicating its strong viscosity-reducing properties. The viscosity, particle sizes and dispersion capabilities of the TiO2 slurry were found to vary depending on the contents and monomer ratios of the dispersant.

Research limitations/implications

P(MAA-BA-DM) dispersant increases the wettability of TiO2 only in oily solvents but not in aqueous solvents.

Practical implications

P(MAA-BA-DM) dispersant makes it easier to disperse TiO2 pigments in oily solvents, increasing the amount of pigment in the solvent and making the preparation of highly pigmented pastes easier.

Originality/value

A dispersant containing suitable carboxyl and tertiary amine groups was initially synthesized to disperse TiO2 in an oily system. The findings are anticipated to be used in the formulation of pigment concentrates, industrial coatings and other solvent-based coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 June 2023

M. Hassanein, M. Abd El Rahm, H. M. Abd El Bary and H. Abd El-Wahab

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Abstract

Purpose

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Design/methodology/approach

Different dispersing agents through the reaction of glycerol monooleate and toluene diisocyanate were prepared and then performed by using three different polyols (succinic anhydride-modified polyethylene glycol PEG 600, EO/PO Polyether Monoamine and p-chloro aniline Polyether Monoamine), to obtain three different dispersing agents for water-based titanium dioxide inkjet inks. The prepared dispersants were characterized using FTIR to monitor the reaction progress. Then the prepared dispersants were formulated in titanium dioxide inkjet inks formulation and characterized by particle size, dynamic surface tension, transmission electron microscopy, viscosity and zeta potential against commercial dispersants. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to washing and crock fastness.

Findings

The obtained results showed that p-chloro aniline Polyether Monoamine (J) and succinic anhydride modified polyethylene glycol PEG 600 (H) dispersants provided optimum performance as compared to commercial standards especially, particle size distribution data while EO/PO Polyether Monoamine based on dispersant was against and then failed with the wettability and dispersion stability tests.

Practical implications

These ink formulations could be used for printing on cotton fabric by DTG technique of printing and can be used for other types of fabrics.

Originality/value

The newly prepared ink formulation for digital textile printing based on synthesized polyurethane prepolymers has the potential to be promising in this type of printing inks, to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 September 2023

Yuanhao Yang, Guangyu Chen, Zhuo Luo, Liuqing Huang, Chentong Zhang, Xuetao Luo, Haixiang Luo and Weiwei Yu

The purpose of this study is to prepare thermal transfer ribbons with good alcohol resistance.

Abstract

Purpose

The purpose of this study is to prepare thermal transfer ribbons with good alcohol resistance.

Design/methodology/approach

A variety of alcohol-resistant thermal transfer inks were prepared using different polyester resins. The printing temperature, printing effect, adhesion and alcohol resistance of the inks on the label were studied to determine the feasibility of using the ink for manufacturing thermal transfer ribbons. The ink formulations were prepared by a simple and stable grinding technology, and then use mature coating technology to make the ink into a thermal transfer ribbon.

Findings

The results show that the thermal transfer ink has good scratch resistance, good alcohol resistance and low printing temperature when the three resins coexist. Notably, the performance of the ribbon produced by 500 mesh anilox roller was better than that of other meshes. Specifically, the ink on the matte silver polyethylene terephthalate (PET) label surface was wiped with a cotton cloth soaked in isopropyl alcohol under 500 g of pressure. After 50 wiping cycles, the ink remained intact.

Originality/value

The proposed method not only ensures good alcohol resistance but also has lower printing temperature and wider label applicability. Therefore, it can effectively reduce the loss of printhead and reduce production costs, because of the low printing temperature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 May 2023

Aniela Kusber, Rafał Józef Gaida, Katarzyna Dziubek and Marian Wit

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the…

Abstract

Purpose

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the characteristics of ink application in food packaging. The impact of the resin on the jettability of the existing printability phase diagrams was also assessed.

Design/methodology/approach

Inks with different resin loadings were tested for selected properties, such as viscosity, particle size and surface tension. Stability was determined using a Turbiscan AGS turbidimeter and LumiFuge photocentrifuge analyzer. The ink layer fastness against abrasion and foodstuffs was evaluated using an Ugra device and according to PN-EN 646, respectively. JetXpert was used to assess Ricoh printhead jetting performance.

Findings

Printability diagrams successfully characterized the jettability of polyurethane inkjet inks on a multi-nozzle printhead and the binder improved droplet formation and printing precision.

Originality/value

Magenta water-based inkjet inks with commercial resins have been developed for printing on paper substrates. To the best of the authors’ knowledge, for the first time, inkjet ink stability was evaluated using the Turbiscan AGS and LumiFuge analyzers, and jettability models were verified using an industrial multi-nozzle printhead.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 January 2024

Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…

Abstract

Purpose

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.

Design/methodology/approach

Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.

Findings

The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.

Originality/value

A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 July 2023

Abdul Lateef, Zulfiqar Ali Raza, Muhammad Aslam, Muhammad Shoaib Ur Rehman, Asma Iftikhar and Abdul Zahir

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Abstract

Purpose

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Design/methodology/approach

The prepared films were evaluated for diverse structural, surface, optical and electrical attributes using advanced analytical techniques, i.e. electron microscopy for surface morphology, Fourier transform infrared spectroscopy for tracing chemical functionalities, x-ray diffraction (XRD) for crystal patterns, water contact angle (WCA) analysis for surface wettability and UV visible spectroscopy for optical absorption parameters. The specimens were also investigated for certain rheological, mechanical and electrical properties, where applicable.

Findings

The surface morphology results expressed a better dispersion of MWCNTs in the resultant PVA-based nanocomposite film. The XRD analysis exhibited that the nanocomposite film was crystalline. The surface wettability analysis indicated that with the inclusion of MWCNTs, the WCA of the resultant nanocomposite film improved to 89.4° from 44° with the pristine PVA film. The MWCNTs (1.00%, w/w) incorporated PVA-based film exhibited a tensile strength of 54.0 MPa as compared to that of native PVA as 25.3 MPa film. There observed a decreased bandgap (from 5.25 to 5.14 eV) on incorporating the MWCNTs in the PVA-based nanocomposite film.

Practical implications

The MWCNTs’ inclusion in the PVA matrix could enhance the AC conductivity of the resultant nanocomposite film. The prepared nanocomposite film might be useful in designing certain optoelectronic devices.

Originality/value

The results demonstrated the successful MWCNTs mediation in the PVA-based composite films expressed good intercalation of the precursors; this resulted in decreased bandgap, usually, desirable for optoelectronic applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 May 2023

Lingyun Cao, Shuaibin Ren, ZhengHao Zhou, Xuening Fei and Changliang Huang

This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding…

Abstract

Purpose

This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding performance under sunlight and infrared irradiation.

Design/methodology/approach

With the help of anionic and cationic polyelectrolytes, the PGT composite pigment was prepared using a layer-by-layer assembly method under wet ball milling. Based on the light reflectance properties and color performance tested by ultraviolet-visible-NIR spectrophotometer and colorimeter, the preparation conditions were optimized and the properties of PGT pigment with different assembly layers (PGT-1, PGT-3, PGT-5 and PGT-7) were compared. In addition, their heat-shielding performance was evaluated and compared by temperature rise value for their coating under sunlight and infrared irradiation.

Findings

The PGT pigment had a core/shell structure, and the PG thickness increased with the self-assembly layers, which made the PGT-3 and PGT-7 pigment show higher color purity and saturation than PGT-1 pigment. In addition, the PGT-3 and PGT-7 pigment showed 11%–16% lower light reflectance in the visible region. However, their light reflectance in the NIR region was similar. Under infrared irradiation the PGT-5 and PGT-7 pigment coating showed 1.1°C–3.4°C and 1.3°C–4.7°C lower temperature rise value than PGT-1 pigment coating and physical mixture pigment coating, respectively. And under sunlight the PGT-3 pigment coating showed 1.5–2.6°C lower temperature rise value than the physical mixture pigment coating.

Originality/value

The layer-by-layer assembling makes the core/shell PGT composite pigment possess low visible light reflectance, high NIR reflectance and good heat-shielding performance.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 January 2024

Seda Aygül, Serkan Yılmazsönmez, Arzu Soyalp and Ayse Aytac

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts…

Abstract

Purpose

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts have been made to replace some of the TiO2 in paint with new pigments. This study aims to replace part of TiO2 pigment with various percentages of BaSO4, CaCO3 and kaolin in styrene butyl acrylate-based paint formulations, without changing the properties of paints using only titanium dioxide.

Design/methodology/approach

To determine the optimum use rate of new pigment mixing, opacity, gloss, scrub resistance and weather resistance properties have been investigated in the water-based paint formulation. The morphological properties of these samples were examined by scanning electron microscopy analysis.

Findings

In the total color change (ΔE) measurements, it was observed that the sample coded 85Ti/15Ba produced extremely similar results to the situation when TiO2 was used alone. It was seen that the best results were obtained when 85Ti/15Ba was used instead of TiO2.

Originality/value

Comparison research on the impact of replacing TiO2 with BaSO4, CaCO3 and kaolin on the performance characteristics of water-based styrene butyl acrylate-based paint formulations has not been done in the literature, according to the literature search.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 13