Search results

1 – 10 of 94
Book part
Publication date: 24 April 2023

Peter C. B. Phillips

The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency…

Abstract

The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency domain form of the model for a fractional process. This representation is particularly useful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary case when the memory parameter d12. Various asymptotic approximations are established including some new hypergeometric function representations that are of independent interest. It is shown that smoothed periodogram spectral estimates remain consistent for frequencies away from the origin in the nonstationary case provided the memory parameter d < 1. When d = 1, the spectral estimates are inconsistent and converge weakly to random variates. Applications of the theory to log periodogram regression and local Whittle estimation of the memory parameter are discussed and some modified versions of these procedures are suggested for nonstationary cases.

Article
Publication date: 7 November 2023

Yingguang Wang

The purpose of this paper is to exploit a new and robust method to forecast the long-term extreme dynamic responses for wave energy converters (WECs).

Abstract

Purpose

The purpose of this paper is to exploit a new and robust method to forecast the long-term extreme dynamic responses for wave energy converters (WECs).

Design/methodology/approach

A new adaptive binned kernel density estimation (KDE) methodology is first proposed in this paper.

Findings

By examining the calculation results the authors has found that in the tail region the proposed new adaptive binned KDE distribution curve becomes very smooth and fits quite well with the histogram of the measured ocean wave dataset at the National Data Buoy Center (NDBC) station 46,059. Carefully studying the calculation results also reveals that the 50-year extreme power-take-off heaving force value forecasted based on the environmental contour derived using the new method is 3572600N, which is much larger than the value 2709100N forecasted via the Rosenblatt-inverse second-order reliability method (ISORM) contour method.

Research limitations/implications

The proposed method overcomes the disadvantages of all the existing nonparametric and parametric methods for predicting the tail region probability density values of the sea state parameters.

Originality/value

It is concluded that the proposed new adaptive binned KDE method is robust and can forecast well the 50-year extreme dynamic responses for WECs.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 July 2023

Chengfu Hu, Chong Shi, Yiping Zhang, Xiao Chen and Sha Luo

Cemented conglomerate accumulation is a weak and heterogeneous medium that occurs in western China. It consists mainly of argillaceous cement that loses strength rapidly upon…

Abstract

Purpose

Cemented conglomerate accumulation is a weak and heterogeneous medium that occurs in western China. It consists mainly of argillaceous cement that loses strength rapidly upon contact with water, leading to collapse instability failure. Its deformation failure mechanism is complex and poorly understood. In this paper, the erosion failure mechanism of cemented conglomerate accumulation is investigated.

Design/methodology/approach

The collapse failure process after erosion of the slope foot for typical cemented conglomerate accumulation is studied based on field investigation using the particle discrete element method. And how the medium composition, slope angle and cementation degree influence the failure mode and process of the cemented conglomerate accumulation is examined.

Findings

The foot erosion of slope induces a tensile failure that typically manifests as “erosion at the foot of slope – tensile cracking at the back edge of slope top – integral collapse.” The collapse failure is more likely to occur when the cemented conglomerate accumulation has a higher rock content, a steeper slope angle or a weaker cementation degree.

Originality/value

A model based on rigid blocks and disk particles to simulate the cemented conglomerate accumulation is developed. It shows that the hydraulic erosion at the foot of the slope resulted in a different failure mechanism than that of general slopes. The results can inform the stability management, disaster prevention and mitigation of similar slopes.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 September 2023

Oliver Csernyava, Jozsef Pavo and Zsolt Badics

This study aims to model and investigate low-loss wave-propagation modes across random media. The objective is to achieve better channel properties for applying radio links…

Abstract

Purpose

This study aims to model and investigate low-loss wave-propagation modes across random media. The objective is to achieve better channel properties for applying radio links through random vegetation (e.g. forest) using a beamforming approach. Thus, obtaining the link between the statistical parameters of the media and the channel properties.

Design/methodology/approach

A beamforming approach is used to obtain low-loss propagation across random media constructed of long cylinders, i.e. a simplified two dimensional (2D) model of agroforests. The statistical properties of the eigenmode radio wave propagation are studied following a Monte Carlo method. An error quantity is defined to represent the robustness of an eigenmode, and it is shown that it follows a known Lognormal statistical distribution, thereby providing a base for further statistical investigations.

Findings

In this study, it is shown that radio wave propagation eigenmodes exist based on a mathematical model. The algorithm presented can find such modes of propagation that are less affected by the statistical variation of the media than the regular beams used in radio wave communication techniques. It is illustrated that a sufficiently chosen eigenmode waveform is not significantly perturbed by the natural variation of the tree trunk diameters.

Originality/value

As a new approach to obtain low-loss propagation in random media at microwave frequencies, the presented mathematical model can calculate scattering-free wave-propagation eigenmodes. A robustness quantity is defined for a specific eigenmode, considering a 2D simplified statistical forest example. This new robustness quantity is useful for performing computationally low-cost optimization problems to find eigenmodes for more complex vegetation models.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 April 2022

Rajesh Babu Damala, Ashish Ranjan Dash and Rajesh Kumar Patnaik

This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power…

Abstract

Purpose

This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power system disturbances on the high-voltage DC (HVDC) transmission link.

Design/methodology/approach

A change detection filter is used to the average and differential current components, which detects the point of fault initiation and records a change detection point (CDP). The half-cycle differential and average currents on both sides of the CDP are sent through the signal processing unit, which produces the respective target. The extracted target indices are sent through a decision tree-based fault classifier mechanism for fault classification.

Findings

In comparison with conventional differential current protection systems, the developed framework is faster in fault detection and classification and provides great accuracy. The new technology allows for prompt identification of the fault category, allowing electrical grids to be restored as quickly as possible to minimize economic losses. This novel technology enhances efficiency in terms of reducing computing complexity.

Research limitations/implications

Setting a threshold value for identification is one of the limitations. To bring the designed system into stability condition before creating faults on it is another limitation. Reducing the computational burden is one of the limitations.

Practical implications

Creating a practical system in laboratory is difficult as it is a HVDC transmission line. Apart from that, installing rectifier and converter section for HVDC transmission line is difficult in a laboratory setting.

Originality/value

The suggested scheme’s importance and accuracy have been rigorously validated for the standard HVDC transmission system, subjected to various types of DC fault, and the results show the proposed algorithm would be a feasible alternative to real-time applications.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Book part
Publication date: 24 April 2023

Abstract

Details

Essays in Honor of Joon Y. Park: Econometric Theory
Type: Book
ISBN: 978-1-83753-209-4

Article
Publication date: 21 December 2023

Hongsen You, Mengying Gan, Dapeng Duan, Cheng Zhao, Yuan Chi, Shuai Gao and Jiansheng Yuan

This paper aims to develop a model that reflects the current transformer (CT) core materials nonlinearity. The model enables simulation and analysis of the CT excitation current…

Abstract

Purpose

This paper aims to develop a model that reflects the current transformer (CT) core materials nonlinearity. The model enables simulation and analysis of the CT excitation current that includes the inductive magnetizing current and the resistive excitation current.

Design/methodology/approach

A nonlinear CT model is established with the magnetizing current as the solution variable. This model presents the form of a nonlinear differential equation and can be solved discretely using the Runge–Kutta method.

Findings

By simulating variations in the excitation current for different primary currents, loads and core materials, the results demonstrate that enhancing the permeability of the BH curve leads to a more significant improvement in the CT ratio error at low primary currents.

Originality/value

The proposed model has three obvious advantages over the previous models with the secondary current as the solution variable: (1) The differential equation is simpler and easier to solve. Previous models contain the time differential terms of the secondary current and excitation flux or the integral term of the flux, making the iterative solution complicated. The proposed model only contains the time differential of the magnetizing current. (2) The accuracy of the excitation current obtained by the proposed model is higher. Previous models calculate the excitation current by subtracting the secondary current from the converted primary current. Because these two currents are much greater than the excitation current, the error of calculating the small excitation current by subtracting two large numbers is greatly enlarged. (3) The proposed model can calculate the distorted waveform of the excitation current and error for any form of time-domain primary current, while previous models can only obtain the effective value.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2023

Chang Zhang, Jiyin Tian and Dan Guo

Fix-position preloading, centrifugal force and higher temperatures cause the bearing units in angular contact ball bearings to expand, changing the contact load and affecting…

Abstract

Purpose

Fix-position preloading, centrifugal force and higher temperatures cause the bearing units in angular contact ball bearings to expand, changing the contact load and affecting bearing life. This study aims to examine the effect of thermal and centrifugal expansion on the fatigue life of fix-position preloaded angular contact ball bearings in high-speed operating conditions.

Design/methodology/approach

The contact loads on the inner and outer bearing rings were resolved according to the thermal and centrifugal expansion factors in the quasi-static position preloading model. The pressure and frictional stress distribution were used to calculate the subsurface stress in the contact area, while the Zaretsky model was used to determine the relative fatigue life of the inner and outer bearing rings.

Findings

Under fix-position bearing preloading, thermal and centrifugal expansion significantly affected the contact load and relative fatigue life. At the same axial preload, the inner ring contact load was higher than the outer ring contact load, with a maximum difference of 132.3%. The decrease in the inner ring relative life exceeded the outer ring contact load, with a maximum difference of 7.5%, compared to the absence of thermal and centrifugal expansion.

Originality/value

This study revealed the influence of thermal and centrifugal expansion on the fatigue life of angular contact ball bearings in high-speed service conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0065/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 January 2023

Zhenjun Li and Chunyu Zhao

This paper aims to discuss the inverse problems that arise in various practical heat transfer processes. The purpose of this paper is to provide an identification method for…

Abstract

Purpose

This paper aims to discuss the inverse problems that arise in various practical heat transfer processes. The purpose of this paper is to provide an identification method for predicting the internal boundary conditions for thermal analysis of mechanical structure. A few examples of heat transfer systems are given to illustrate the applicability of the method and the challenges that must be addressed in solving the inverse problem.

Design/methodology/approach

In this paper, the thermal network method and the finite difference method are used to model the two-dimensional heat conduction inverse problem of the tube structure, and the heat balance equation is arranged into an explicit form for heat load prediction. To solve the matrix ill-conditioned problem in the process of solving the inverse problem, a Tikhonov regularization parameter selection method based on the inverse computation-contrast-adjustment-approach was proposed.

Findings

The applicability of the proposed method is illustrated by numerical examples for different dynamically varying heat source functions. It is proved that the method can predict dynamic heat source with different complexity.

Practical implications

The modeling calculation method described in this paper can be used to predict the boundary conditions for the inner wall of the heat transfer tube, where the temperature sensor cannot be placed.

Originality/value

This paper presents a general method for the direct prediction of heat sources or boundary conditions in mechanical structure. It can directly obtain the time-varying heat flux load and thtemperature field of the machine structure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 May 2023

Yanbiao Zou, Tao Liu, Tie Zhang and Hubo Chu

This paper aims to propose a learning exponential jerk trajectory planning to suppress the residual vibrations of industrial robots.

Abstract

Purpose

This paper aims to propose a learning exponential jerk trajectory planning to suppress the residual vibrations of industrial robots.

Design/methodology/approach

Based on finite impulse response filter technology, a step signal with a proper amplitude first passes through two linear filters and then performs exponential filter shaping to obtain an exponential jerk trajectory and cancel oscillation modal. An iterative learning strategy designed by gradient descent principle is used to adjust the parameters of exponential filter online and achieve the maximum vibration suppression effect.

Findings

By building a SCARA robot experiment platform, a series of contrast experiments are conducted. The results show that the proposed method can effectively suppress residual vibration compared to zero vibration shaper and zero vibration and derivative shaper.

Originality/value

The idea of the adopted iterative leaning strategy is simple and reduces the computing power of the controller. A cheap acceleration sensor is available because it just needs to measure vibration energy to feedback. Therefore, the proposed method can be applied to production practice.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 94