Search results

1 – 10 of over 19000
Article
Publication date: 26 September 2023

Murat Demir and Gonca Balci Kilic

The purpose of this study is to explore the effect of stitch type and stitch direction on the dynamic drape behavior of the woven fabric.

127

Abstract

Purpose

The purpose of this study is to explore the effect of stitch type and stitch direction on the dynamic drape behavior of the woven fabric.

Design/methodology/approach

In this paper, the effectiveness of stitch type and stitch directions on dynamic drape behaviors were investigated. Fabric parts were sewn together with two types of the stitch (lockstitch and overlock stitch) on three different stitch directions (warp, weft and bias (45°)). The static drape coefficients (SDC) of unsewn and sewn fabrics were measured according to the image process method. Dynamic drape coefficients (DDC) of fabrics were also measured using the same method at six different (25, 50, 75, 100, 125, 150 rpms) rotation speeds. Additionally, bending length and bending rigidity were measured using the Cantilever test method.

Findings

Experimental results showed that stitch type and stitch directions are effective on the dynamic drape behaviors of the fabric. Overlock stitch resulted in greater DDC than the lock stitch. For both of the stitch type, DDC for the stitch on the warp direction are greater than the stitch on the weft and bias direction for all speeds. In addition, bending length, hence the bending rigidity, are greater for overlock stitch type and always weft direction resulted in greater than the warp and bias direction.

Originality/value

Fabric drape is vital for garment appearance and is gaining popularity with the advancement of virtual technology, enabling virtual visualization of garments. While previous studies have predominantly examined either the static or dynamic drape behavior of individual fabric panels, or solely focused on the static drape behavior of sewn fabrics, this study acknowledges the significance of incorporating the influence of stitch type and direction on dynamic drape behaviors. Considering that fabrics are sewn together to create garments and that DDC provides a more accurate representation of real-time fabric behavior compared to SDC, this research makes a valuable contribution to the existing literature by investigating the impact of stitch type and direction specifically on DDC.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 May 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing…

Abstract

Purpose

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.

Design/methodology/approach

In this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.

Findings

Even though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 January 2022

Kura Alemayehu Beyene, Wassie Mengie and Chirato Godana Korra

The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics in three…

Abstract

Purpose

The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics in three measurement directions weft (0°), the warp (90°) and the diagonal (45°).

Design/methodology/approach

Nine 3/1 (Z) twill samples were prepared with two factors and three levels and their roughness values were measured in the weft (0°), warp (90°) and diagonal (45°) directions of 3/1 (Z) twill fabrics using the Kawabata-FB4 instrument. Analysis of variance (ANOVA) is used to determine the effect of weft yarn diameter and pick density on SMD properties and comparisons were done in the weft (0°), the warp (90°) and the diagonal (45°) directions.

Findings

From experimental analysis, weft yarn diameter and pick density affect SMD of 3/1 (Z) twill-woven fabrics in both diagonal (45°) and weft (0°) directions but slightly affect warp (90°) direction. Maximum SMD values were observed in diagonal (45°) directions and the minimum was in warp (90°) directions of fabrics. Weft yarn diameter and pick density are statistically significant on SMD values of 3/1 (Z) twill-woven fabrics for three directions at a 95% confidence interval. Parameter variation in weft directions of 3/1 (Z) twill-woven fabrics also varies SMD values in three directions measurements

Originality/value

The findings of this study can be usually used for textile technology, industries and laboratories to create a basic understanding for measuring roughness properties of 3/1 (Z) twill fabric. It is also possible to identify the surface characterizations in different directions of measurement for their usage in some specific areas of end application like consumer goods, home textiles, technical textiles, etc.

Details

Research Journal of Textile and Apparel, vol. 27 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 August 2023

Fatih Yılmaz, Ercan Gürses and Melin Şahin

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test…

Abstract

Purpose

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test campaign and micro computerized tomography (microCT) imaging.

Design/methodology/approach

ASTM E8 tensile test specimens are designed and manufactured by EBM at an Arcam Q20 Plus machine. Surface quality is improved by machining to discard the effect of surface roughness. After surface machining, hot isostatic pressing (HIP) post-treatment is applied to half of the specimens to remove unsolicited internal defects. ASTM E8 tensile test campaign is carried out simultaneously with digital image correlation to acquire strain data for each sample. Finally, build direction and HIP post-treatment dependencies of elastoplastic properties are analyzed by F-test and t-test statistical analyses methods.

Findings

Modulus of elasticity presents isotropic behavior for each build direction according to F-test and t-test analysis. Yield and ultimate strengths vary according to build direction and post-treatment. Stiffness and strength properties are superior to conventional Ti-6Al-4V material; however, ductility turns out to be poor for aerospace structures compared to conventional Ti-6Al-4V alloy. In addition, micro CT images show that support structure leads to dense internal defects and pores at applied surfaces. However, HIP post-treatment diminishes those internal defects and pores thoroughly.

Originality/value

As a novel scientific contribution, this study investigates the effects of three orthogonal build directions on elastoplastic properties, while many studies focus on only two-build directions. Evaluation of Poisson’s ratio is the other originality of this study. Furthermore, another finding through micro CT imaging is that temporary support structures result in intense defects closer to applied surfaces; hence high-stress regions of structures should be avoided to use support structures.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 March 2023

Minting Wang, Renjie Cao, HuiChao Chang and Dong Liang

Laser-based powder bed fusion (LPBF) is a new method for forming thin-walled parts, but large cooling rates and temperature gradients can lead to large residual stresses and…

Abstract

Purpose

Laser-based powder bed fusion (LPBF) is a new method for forming thin-walled parts, but large cooling rates and temperature gradients can lead to large residual stresses and deformations in the part. This study aims to reduce the residual stress and deformation of thin-walled parts by a specific laser rescanning strategy.

Design/methodology/approach

A three-dimensional transient finite element model is established to numerically simulate the LPBF forming process of multilayer and multitrack thin-walled parts. By changing the defocus amount, the laser in situ annealing process is designed, and the optimal rescanning parameters are obtained, which are verified by experiments.

Findings

The results show that the annealing effect is related to the average surface temperature and scan time. When the laser power is 30 W and the scanning speed is 20 mm/s, the overall residual stress and deformation of the thin-walled parts are the smallest, and the in situ annealing effect is the best. When the annealing frequency is reduced to once every three layers, the total annealing time can be reduced by more than 60%.

Originality/value

The research results can help better understand the influence mechanism of laser in situ annealing process on residual stress and deformation in LPBF and provide guidance for reducing residual stress and deformation of LPBF thin-walled parts.

Article
Publication date: 19 May 2023

Soliyana Gebeyaw, Kura Alemayehu Beyene, Eradu Seid, Zemzem Mustofa and Gideon K. Rotich

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Abstract

Purpose

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Design/methodology/approach

The manufactured fabrics were evaluated for their tensile strength, drapeability, bending length by weight and color fastness to light. And finally, an analysis of variance was done for each parameter.

Findings

As the percent of PVA with a vinyl acrylic solution and the number of layers increased, the tensile strength, drape coefficient (percent), bending length (cm), and color fastness to light increased in both directions. The percent of PVA with a vinyl acrylic solution and the number of layers are statistically significant for each response such as tensile strength, drape coefficient (percent), bending length (cm), color fastness to light and water repellency at a 95% confidence interval. Tensile strength, drape coefficient (%) and bending length (cm) are always greater in the warp direction than in the weft direction. The tensile strength, drape coefficient (percent), bending length (cm) and color fastness to light of treated fabrics samples are greater than those of the untreated fabrics.

Originality/value

The factory waste fabrics can be recycled into window shutters which will provide the cheaper raw material for window shutter manufacturers.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 October 2022

Yang Zhou, Wenying Qu, Fan Zhou, Xinggang Li, Lijun Song and Qiang Zhu

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force…

Abstract

Purpose

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force excitation and its effect on the melt flow and solidification parameters, intending to obtain practical references for the design of magnetic field-assisted laser directed energy deposition (L-DED) equipment.

Design/methodology/approach

A three-dimensional transient multi-physical model, coupled with MHD and thermodynamic, was established. The dimension and microstructure of the molten pool under a 0T magnetic field was used as a benchmark for accuracy verification. The interaction between the melt flow and the Lorenz force is compared under a static magnetic field in the X-, Y- and Z-directions, and also an oscillating and alternating magnetic field.

Findings

The numerical results indicate that the chaotic fluctuation of melt flow trends to stable under the magnetostatic field, while a periodically oscillating melt flow could be obtained by applying a nonstatic magnetic field. The Y and Z directional applied magnetostatic field shows the effective damping effect, while the two nonstatic magnetic fields discussed in this paper have almost the same effect on melt flow. Since the heat transfer inside the molten pool is dominated by convection, the application of a magnetic field has a limited effect on the temperature gradient and solidification rate at the solidification interface due to the convection mode of melt flow is still Marangoni convection.

Originality/value

This work provided a deeper understanding of the interaction mechanism between the magnetic field and melt flow inside the molten pool, and provided practical references for magnetic field-assisted L-DED equipment design.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 March 2023

Jiaqi Ji and Yong Wang

The purpose of this paper is to improve the automation of selective disassembly sequence planning (SDSP) and generate the optimal or near-optimal disassembly sequences.

Abstract

Purpose

The purpose of this paper is to improve the automation of selective disassembly sequence planning (SDSP) and generate the optimal or near-optimal disassembly sequences.

Design/methodology/approach

The disassembly constraints is automatically extracted from the computer-aided design (CAD) model of products and represented as disassembly constraint matrices for DSP. A new disassembly planning model is built for computing the optimal disassembly sequences. The immune algorithm (IA) is improved for finding the optimal or near-optimal disassembly sequences.

Findings

The workload for recognizing disassembly constraints is avoided for DSP. The disassembly constraints are useful for generating feasible and optimal solutions. The improved IA has the better performance than the genetic algorithm, IA and particle swarm optimization for DSP.

Research limitations/implications

All parts must have rigid bodies, flexible and soft parts are not considered. After the global coordinate system is given, every part is disassembled along one of the six disassembly directions –X, +X, –Y, +Y, –Z and +Z. All connections between the parts can be removed, and all parts can be disassembled.

Originality/value

The disassembly constraints are extracted from CAD model of products, which improves the automation of DSP. The disassembly model is useful for reducing the computation of generating the feasible and optimal disassembly sequences. The improved IA converges to the optimal disassembly sequence quickly.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 22 January 2024

Qiaojun Zhou, Ruilong Gao, Zenghong Ma, Gonghao Cao and Jianneng Chen

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment…

Abstract

Purpose

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment, leading to grasping failure and apple damage.

Design/methodology/approach

This study introduces the system units of the apple-picking robot prototype, proposes a method to determine the apple-picking direction via 3D point cloud data and optimizes the path planning method according to the calculated picking direction.

Findings

After the field experiments, the average deviation of the calculated picking direction from the desired angle was 11.81°, the apple picking success rate was 82% and the picking cycle was 11.1 s.

Originality/value

This paper describes a picking control method for an apple-picking robot that can improve the success and reliability of picking in an unstructured environment and provides a basis for automated and mechanized picking in the future.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 November 2023

Jihye Park, Min Zhang, Seunghyun Yoo and Hannah Gloria Kwon

This study investigates the effects of vertical direction and rotation of English loan brand names in East Asian languages (Chinese and Korean) on processing fluency, perceived…

Abstract

Purpose

This study investigates the effects of vertical direction and rotation of English loan brand names in East Asian languages (Chinese and Korean) on processing fluency, perceived product quality and purchase intention.

Design/methodology/approach

Four experiments were conducted in China and Korea, employing a 2 (vertical direction: downward vs upward) X 3 (rotation: 0°/marquee vs 90° clockwise vs 90° counterclockwise) between-subjects factorial design.

Findings

The findings showed that when the English loan Chinese brand name was displayed downward, the marquee format was preferred, while counterclockwise rotation was favored when displayed upward. In Korean, clockwise rotation was preferred for downward presentation, while counterclockwise rotation was favored for upward presentation. The effects on purchase intention were mediated by processing fluency and perceived product quality.

Practical implications

This research provides practical implications for global manufacturers and retailers, offering guidance on presenting brand names in East Asian languages and optimizing product packaging designs. For Chinese consumers, the marquee format is recommended for downward-oriented brand names, while counterclockwise rotation is effective for upward orientation. For Korean consumers, clockwise rotation is favored for downward presentation and counterclockwise rotation is preferred for upward presentation. Understanding linguistic habits allows the tailoring of brand presentations, enhancing brand perception and consumer responses.

Originality/value

This study contributes to understanding the role of cultural and linguistic influences on consumer information processing and product perception in vertical presentations of brand names.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of over 19000