Search results

1 – 10 of over 165000
Article
Publication date: 31 May 2022

Arunangshu Mukhopadhyay and Vivek Prasad Shaw

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The…

Abstract

Purpose

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of this study is to investigate the effect of abrasion on the change in surface appearance, mass loss and ultimate tensile properties of the stretch denim fabric in different directions (warp, weft and biased).

Design/methodology/approach

After abrading the fabrics in three different directions (warp, weft and biased), the loss in ultimate tensile properties, mass loss and surface appearance has been investigated in the respective directions of abrasion (warp, weft and biased). The study also encompasses the effect of different types of stretch yarn with varying levels of elastane content on such unidirectional abrasive damage.

Findings

It is seen that with the same level of abrasion cycles, the fabric's response in terms of mass loss and loss in ultimate tensile properties are different in different directions. The mass loss due to abrasion in biased direction is found to be minimum. The loss in ultimate tensile properties due to abrasion was highest in the weft direction. It is also found that the higher mass loss due to abrasion does not always result in a greater loss in ultimate tensile properties. The composition and the structure of the weft yarn significantly affected the extent of the mass loss and the loss in ultimate tensile properties during abrasive damage.

Originality/value

The impact of abrasive damage in terms of mass loss and loss in tensile strength along the different directions of denim fabric has not been explored till date. Abrasion of fabric can be done both in multi-direction (Lissajous motion) as well as in uni-direction (linear motion). The multidirectional abrasion provides a holistic or comprehensive idea of the fabric's response to the abrasive damage but does not take into consideration the fabric's anisotropic response to the abrasive damage. Most of the earlier investigation related to abrasive damage of denim fabric has been done in instruments where the motion of the abrader is multidirectional (Lissajous) in nature. For greater depth of understanding about the fabric performance under abrasive damage along the various direction (warp, weft and biased), unidirectional abrasion is conducted in this study.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 19 May 2022

Feng Shi, Xian Tu and Shuo Zhao

Under the constraints of given passenger service level and coupling travel demand with train departure time, this study optimizes the train operational plan in an urban…

Abstract

Purpose

Under the constraints of given passenger service level and coupling travel demand with train departure time, this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.

Design/methodology/approach

The authors optimize the train operational plan in a special network layout, i.e. an urban rail corridor with dead-end terminal yard, by decomposing it into two sub-problems: train timetable optimization and rolling stock circulation optimization. As for train timetable optimization, the authors propose a schedule-based passenger flow assignment method, construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm. For the optimization of rolling stock circulation, the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.

Findings

The case study shows that the train operational plan developed by the study's approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.

Originality/value

The example verifies the efficiency of the model and algorithm.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 4 January 2022

Kura Alemayehu Beyene, Wassie Mengie and Chirato Godana Korra

The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics…

Abstract

Purpose

The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics in three measurement directions weft (0°), the warp (90°) and the diagonal (45°).

Design/methodology/approach

Nine 3/1 (Z) twill samples were prepared with two factors and three levels and their roughness values were measured in the weft (0°), warp (90°) and diagonal (45°) directions of 3/1 (Z) twill fabrics using the Kawabata-FB4 instrument. Analysis of variance (ANOVA) is used to determine the effect of weft yarn diameter and pick density on SMD properties and comparisons were done in the weft (0°), the warp (90°) and the diagonal (45°) directions.

Findings

From experimental analysis, weft yarn diameter and pick density affect SMD of 3/1 (Z) twill-woven fabrics in both diagonal (45°) and weft (0°) directions but slightly affect warp (90°) direction. Maximum SMD values were observed in diagonal (45°) directions and the minimum was in warp (90°) directions of fabrics. Weft yarn diameter and pick density are statistically significant on SMD values of 3/1 (Z) twill-woven fabrics for three directions at a 95% confidence interval. Parameter variation in weft directions of 3/1 (Z) twill-woven fabrics also varies SMD values in three directions measurements

Originality/value

The findings of this study can be usually used for textile technology, industries and laboratories to create a basic understanding for measuring roughness properties of 3/1 (Z) twill fabric. It is also possible to identify the surface characterizations in different directions of measurement for their usage in some specific areas of end application like consumer goods, home textiles, technical textiles, etc.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 March 2021

Valerie Bradley, Miso Kwak, Highsmith Rich and Bevin Croft

Self-direction–also known as participant direction, personalization and self-directed care–is a service delivery model that enables people to manage their personal budget…

Abstract

Purpose

Self-direction–also known as participant direction, personalization and self-directed care–is a service delivery model that enables people to manage their personal budget and purchase services and supports tailored to their needs based on a person-centered plan. This paper, the outcome of an international learning exchange on self-direction, describes approaches across four countries’ successful strategies, unresolved questions and recommendations to enhance self-direction globally.

Design/methodology/approach

The findings are a product of discussions at the 2019 International Initiative for Mental Health Leadership and International Initiative for Disability Leadership Exchange on Advances in Self-Direction. Participants included people who are self-directing, providers and caregivers who support people who are self-directing, advocates, fiscal agents and public managers who administer self-direction from the United States, England, Australia and New Zealand.

Findings

In all four countries, people who self-direct exercise high levels of choice and control and are able to individualize their services and supports to promote a good life in the community. The exchange also revealed challenges and possible solutions to improve and expand self-direction.

Practical implications

The results of the meeting provide guidance for public managers, providers and advocates for initiating and expanding self-direction.

Originality/value

This international meeting was a unique opportunity to compare self-direction across four different countries and across multiple perspectives, including people with disabilities, caregivers, providers and administrators.

Details

Journal of Integrated Care, vol. 29 no. 3
Type: Research Article
ISSN: 1476-9018

Keywords

Article
Publication date: 25 September 2009

Yuan Mao Huang and Yu‐Chung Liao

The purpose of this paper is to enhance the method developed by previous researchers. In addition to using the combined interference matrix, the combined connection matrix…

Abstract

Purpose

The purpose of this paper is to enhance the method developed by previous researchers. In addition to using the combined interference matrix, the combined connection matrix and the combined contact matrix of product components, the disassembly sequence matrix and the combined instability matrix with platform to evaluate instability of sub‐assemblies are built, and effects of changes of sub‐assembly disassembly directions or tools and the effect of gravity are considered to obtain the best disassembly sequence for a product with many components. A computer program is generated and results of two cases are compared with those of the available studies.

Design/methodology/approach

The methodology includes the combined interference matrix, the combined contact matrix and the combined connection matrix of components for a product. The combined instability matrix of sub‐assemblies, changes of sub‐assembly disassembly direction or tools, and the effect of gravity during operation are considered. The binary number system is used to simplify relations among components of a product.

Findings

This methodology enhances the existing method and software is generated. Results of two cases are compared and show the same optimum disassembly processes as those obtained from other researchers.

Research limitations/implications

All matrices are defined by the directions of x, y and z with three axes perpendicular to each other. The computer program generated cannot be used for a product with components that must be disassembled in the directions different from the axes.

Practical implications

Two cases are used to investigate feasibility of the proposed methodology with the computer program generated. The first one is an electric drill, and the second one is a flash lighter.

Originality/value

The methodology described in this paper is feasible for study of disassembly processes of products. The software generated can be used to obtain the optimum disassembly process of products.

Details

Assembly Automation, vol. 29 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 November 2003

Zezhong C. Chen, Zuomin Dong and Geoffrey W. Vickers

The objective of CNC machining is to produce mechanical parts with designed quality most efficiently. To generate CNC tool paths for machining a sculptured part using a…

1260

Abstract

The objective of CNC machining is to produce mechanical parts with designed quality most efficiently. To generate CNC tool paths for machining a sculptured part using a three‐axis CNC machine, surface geometry, cutter shape and size, as well as tool path interval and direction need to be considered. In this work, the relation between the direction of a tool motion and cutting efficiency is studied. A new measure of cutting efficiency in three‐axis CNC milling – the length of effective cutting edge (ECE) is introduced. The ECE length is mathematically proven to reach its maximum when the tool cuts a sculptured surface along its steepest tangent direction at the cutter contact point. The steepest tangent direction is thus proven to be the most efficient tool feed direction in three‐axis sculptured part machining. The study identifies tool feed direction as a new control parameter in CNC tool path planning, and forms the foundation for further research on three‐axis tool path generation of sculptured parts.

Details

Integrated Manufacturing Systems, vol. 14 no. 7
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 25 October 2019

Yanzhong Wang, Guanhua Song, Wentao Niu and Yaping Zhang

The purpose of this paper is to provide an analytical method of jet flow injection direction and to determine the influence of oil nozzle structure parameters on oil…

Abstract

Purpose

The purpose of this paper is to provide an analytical method of jet flow injection direction and to determine the influence of oil nozzle structure parameters on oil injection direction, thus providing the design method of oil nozzle structure parameters.

Design/methodology/approach

A model of oil injection loss is established to analyze the influence of oil nozzle structure parameters on oil injection direction. The computational fluid dynamics method is used to simulate the process of the deviation of jet flow injection direction. The deviation of jet flow injection direction with different oil nozzle structure parameters is calculated and their variations are obtained. Moreover, the deviation of jet flow injection direction with different oil nozzle structure parameters is tested to verify the analysis results.

Findings

Results indicate that radial velocity caused the deflection of the oil injection direction. The deviation of jet flow increased as the nozzle slenderness ratio decreased. The design method of the nozzle slenderness ratio (greater than five) is proposed to avoid the deviation of injection direction, and it is necessary to consider the matching between the nozzle slenderness ratio and pipeline pressure. The computational results coincide well with the experimental results.

Originality/value

The research presented here analyzed the influence of oil nozzle structure parameters on oil injection direction via a numerical analysis method. It also leads to a design reference guideline that could be used in jet lubrication, thus controlling the direction of the injection jet accurately.

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 August 2013

Deepayan Gope, Prakash Chandra Gope and Aruna Thakur

This paper aims to deal with the study of interaction between multiple cracks in an aluminum alloy under static loading. Self-similar as well as non-self-similar crack…

Abstract

Purpose

This paper aims to deal with the study of interaction between multiple cracks in an aluminum alloy under static loading. Self-similar as well as non-self-similar crack growth has been observed which depends on the relative crack positions defined by crack offset distance and crack tip distance. On the basis of experimental observations, the conditions for crack coalescence, crack shielding, crack interaction, crack initiation, etc. are discussed with respect to crack position parameters. Considering crack tip distance, crack offset distance, crack size and crack inclination with loading axis as input parameter and crack initiation direction as output parameter, an artificial neural network (ANN) model is developed. The model results were then compared with the experimental results. It was observed that the model predicts the crack initiation direction under monotonic loading within a scatter band of ±0.5°.

Design/methodology/approach

The study is based on the experimental observations. Growth studies are made from the growth initiation from two cracks in a rectangular aluminium plate under static loading. The present study is focused on the influence of crack position defined by crack offset distance and crack tip distance on growth direction. In addition to this, ANN has been used to predict crack growth direction in multiple crack geometry under static loading. The predicted results have been compared with the experimental data.

Findings

The influence of the interaction between multiple cracks on crack extension angle greatly depends on the relative position of cracks defined by crack tip distance S, crack offset distance H and crack inclinations with respect to loading direction. The intensity of the crack interaction can be described according to degree of crack extension angle and relative crack position factors. It is also observed that the progress of the outer and inner crack tip direction is different which mainly depends on the relative crack position.

Research limitations/implications

It is limited to static loading only. Under fatigue loading findings may differ.

Practical implications

It is important to investigate the growth behaviour under multiple cracks and also to know the effect of crack statistics on the growth behaviour to estimate the component life. The study also focused on the development of a high quality predictive method.

Originality/value

The results show trends that vary with crack geometry condition and the ANN and empirical solution provides a possible solution to assess crack initiation angle under multiple crack geometry.

Details

International Journal of Structural Integrity, vol. 4 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 January 2009

S. Shaikhzadeh Najar, E. Hezavehi, Sh. Hoseini Hashemi and A. Rashidi

The purpose of this paper is to describe a unique approach to investigate the wrinkle force of textile structures in a cylindrical model.

1230

Abstract

Purpose

The purpose of this paper is to describe a unique approach to investigate the wrinkle force of textile structures in a cylindrical model.

Design/methodology/approach

In this research, an apparatus was designed and constructed in order to investigate the torsional and wrinkle behavior of textile structures in a cylindrical model under a different rotational level using data acquisition and micro‐controller systems.

Findings

In the light of research results, the fiber and fabric type, fabric physical and mechanical properties and imposed rotational level significantly contributed to wrinkle characteristics of worsted fabrics. It was noticed that with increase of rotational level, the wrinkle force, and energy increased along weft and warp directions. Wrinkle characteristics along warp direction exhibited greater values than in weft direction.

Originality/value

The study is aimed at determining wrinkle behavior of worsted fabrics under the combined influences of compression and torsional strains.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 165000